Trivializing the Hrushovski constructions

David M Evans.

EHUD HRUSHOVSKI: (1988) Counterexamples to two of the most significant conjectures in model theory.

QUESTION: Are the counterexamples just very clever pathologies, or do they have connections with other parts of mathematics?

THIS TALK:

- Model-theoretic background
- Zilber’s conjecture
- Hrushovski constructions
- Random graphs (Shelah, Spencer; Baldwin)
- New way of looking at the constructions (DE)
1. Model theory

The *formulas* of a first-order language \(L \) are certain finite strings of the symbols:

\[\forall \exists \to \to \wedge \vee \) (, \(x_1 x_2 \ldots y_1 y_2 \ldots \)

and

(2) Various symbols (including \(= \)) used to denote relations and functions.

What you take for (2) depends on what sort of structure you want the formulas to talk about.

EXAMPLES: (i) Graphs: \(= \) and a 2-ary relation \(R \) for adjacency.

(ii) Rings: \(= \) and \(+, \cdot \) (2-ary functions), \(0, 1 \) (constants).

(iii) \(K \)-vector spaces: \(=, +, 0 \), and for each \(\alpha \in K \) a 1-ary function symbol to denote scalar multiplication by \(\alpha \).

\(L \)-FORMULAS: Usual mathematical shorthand: variables can only range over the *elements* of a structure.

NOTATION: (i) \(M \models \phi \) the formula \(\phi \) is true in the structure \(M \).

(ii) If \(\phi(x_1, \ldots, x_n, y_1, \ldots, y_m) \) is a formula with free variables amongst \(x_1, \ldots, x_n, y_1, \ldots, y_m \) and \(\bar{a} = (a_1, \ldots, a_m) \in M^m \), let

\[\phi[M, \bar{a}] = \{ (b_1, \ldots, b_n) \in M^n : M \models \phi(b_1, \ldots, b_n, \bar{a}) \} \]

This is a *definable subset of* \(M^n \) (using parameters \(a_1, \ldots, a_m \)).
GENERAL PHILOSOPHY: Fix a language L and:

(I) Compare L-structures by looking at their L-theories

$$Th(M) = \{ \phi : \phi \text{ closed and } M \models \phi \}.$$

(II) For a given L-structure M, think about its collection of definable subsets.

EXAMPLES FOR (I): What properties can be expressed by first-order formulas?

Graphs:
- Triangle free (YES)
- Diameter $\leq d$ (YES)
- Connected (NO)

Rings:
- Integral domain (YES)
- Bézout (YES)
- Principal ideal domain (NO)
2. Zilber’s Conjecture.

Definition: An infinite L-structure M is *strongly minimal* if for every L-formula $\phi(x, \bar{y})$ there exists $k \in \mathbb{N}$ such that for all \bar{a}, either
\[\{ b \in M : M \models \phi(b, \bar{a}) \} \] or its complement has size $\leq k$.

From the viewpoint of (II), these are the ‘simplest’ structures.

Examples of strongly minimal structures:
1. M is a ‘pure set’ (the language L has $=$, but no other relation or function symbols).
2. M is a K-vector space (where K is a division ring and the language is as described before).
3. M is an algebraically closed field (the language is the language for rings).

Zilber’s Conjecture: These are essentially the only examples of strongly minimal structures.

Early 1980’s. **Theorem** (Zilber et al.): The conjecture is true for ω-categorical structures.

1988. Without any further hypotheses, the conjecture is false (Hrushovski).

Early 1990’s. Under additional hypotheses (Zariski structure) the conjecture is true (Hrushovski, Zilber).

1990’s - date. New idea of Zilber: Realise the counterexamples in ‘classical’ mathematics using complex analytic functions.

Work of Zilber, Wilkie, Koiran, Peatfield....
2003. Zilber: Connections between the construction and non-commutative geometry, string theory...
3. The construction

Describe the simplest form of the construction.
Work with graphs (so L has $=$ and a 2-ary relation symbol R).
Fix a real parameter α with $0 < \alpha < 1$.

Definition:

(1) If A is a finite graph define the *predimension* of A to be

$$\delta(A) = |A| - \alpha e(A)$$

where e denotes the number of edges in A.

(2) If A is a subgraph of the finite graph B write

$$A \subseteq B$$

to mean

$$\delta(A) \leq \delta(B')$$

for all B' with $A \subseteq B' \subseteq B$.

(Pronounced: A is a self-sufficient subgraph of B.)

Properties:

(1) If $A \subseteq B$ and $X \subseteq B$, then $A \cap X \subseteq X$.

(2) If $A \subseteq B \subseteq C$, then $A \subseteq C$.

(3) If $A_1, A_2 \subseteq B$, then $A_1 \cap A_2 \subseteq B$.

(4) If $X \subseteq B$, there is a unique smallest $A \subseteq B$ with $X \subseteq A$. Call this the *closure* of X in B, and denote it by $\text{cl}_B(X)$.

Denote by C the class of finite graphs A which satisfy

$$\emptyset \leq A$$

i.e. for all $X \subseteq A$, we have $|X| - \alpha e(A) \geq 0$. (Another way: average valency of X is $\leq 2/\alpha$.)

Strong Amalgamation Lemma: Suppose $B, C \in C$ and A is a subgraph of both B and C, and $A \leq C$. Let E be the disjoint union of B and C over A. Then $E \in C$ and $B \leq E$.

Using this, we can ‘glue’ the graphs in C together to obtain:

Theorem: There exists a countably infinite graph $M = M_\alpha$ satisfying the following properties:

(G1): M is the union of a chain of finite subgraphs $A_1 \leq A_2 \leq A_3 \leq \cdots$ all in C.

(G2): If $A \leq M$ is finite and $A \leq B \in C$, then there is an embedding $f : B \rightarrow M$ which is the identity on A and has $f(B) \leq M$.

Moreover, M is uniquely determined up to isomorphism by these two properties and if $h : B_1 \rightarrow B_2$ is an isomorphism between finite closed subgraphs of M, then h can be extended to an automorphism of M. \(\square\)

Theorem: (Hrushovski; Wagner; Baldwin, Shi) If $0 < \alpha < 1$ then M_α is stable (and not 1-based). If α is rational, then M_α is ω-stable, of infinite Morley rank. \(\square\)
4. Irrational α, random graphs

S. Shelah, J. Spencer, (JAMS, 1988): Fix α irrational with $0 < \alpha < 1$. For $n \in \mathbb{N}$, consider choosing a graph on n vertices by randomly choosing each pair of vertices to be an edge, with probability $1/n^\alpha$. If ϕ is a closed L-formula, let

$$P(\phi, \alpha; n)$$

be the probability that the randomly chosen graph has the property expressed by ϕ. Consider what happens as $n \to \infty$:

Theorem: (Zero-one law) For each such ϕ, either $P(\phi, \alpha; n) \to 0$ as $n \to \infty$, or $P(\phi, \alpha; n) \to 1$ as $n \to \infty$.

Later on, Baldwin and Shelah made the connection:

Theorem: For all closed L-formulas ϕ:

$$P(\phi, \alpha; n) \to 1 \text{ as } n \to \infty \iff M_\alpha \models \phi.$$

Remarks: (1) Compare with the classic result of Fagin, Glebskii et al.. If we choose the edges with probability $\frac{1}{2}$, then we again have a zero-one law, but this time the limit theory is that of the Random Graph.

(2) If β is rational and $0 < \beta < 1$ then as $\alpha \to \beta^-$ (and α irrational), then $Th(M_\alpha) \to Th(M_\beta)$.

5. α rational; directed graphs

Directed graphs: Let \mathcal{D} be the class of finite directed graphs D with all vertices having ≤ 2 out-vertices. If $C \subseteq D$, write $C \subseteq D$ to mean that out-vertices of elements of C are contained in C (say that C is closed in D).

Easy Lemma: (1) If $C \subseteq D$ and $X \subseteq D$ then $C \cap X \subseteq X$.
(2) If $C \subseteq D \subseteq E$ then $C \subseteq E$.
(3) (Strong Amalgamation) Suppose $D, E \in \mathcal{D}$ and C is a sub-digraph of both D and E and $C \subseteq E$. Let F be the disjoint union of D and E over C. Then $F \in \mathcal{D}$ and $D \subseteq F$. □

Using this we have:

Proposition: There exists a countably infinite digraph N satisfying the following properties:

(D1): N is the union of a chain of finite subgraphs $C_1 \subseteq C_2 \subseteq C_3 \subseteq \cdots$ all in \mathcal{D}.

(D2): If $C \subseteq N$ is finite and $C \subseteq D \in \mathcal{D}$, then there is an embedding $f : D \rightarrow N$ which is the identity on C and has $f(D) \subseteq N$.

Moreover, N is uniquely determined up to isomorphism by these two properties and is \subseteq-homogeneous. □

Proposition: N is stable, trivial and 1-based. □

... So N is rather a dull structure.
.... or is it?

Fix \(\alpha = \frac{1}{2} \). Work with \(\delta(A) = 2|A| - e(A) \).

So \(C = \{A : \delta(X) \geq 0 \text{ for all } X \subseteq A\} \) and \(M = M_{1/2} \).

Theorem: Forget the directions on the edges in \(N \). The resulting graph is \(M_{1/2} \).

The following answers a question of Bruno Poizat from 1991.

Corollary: There is a stable, trivial, 1-based structure with a reduct which is neither trivial, nor 1-based.

Definition: Suppose \(A \) is a finite graph. A \(\mathcal{D} \)-orientation of \(A \) is a directed graph \(A^+ \in \mathcal{D} \) with the same vertex set as \(A \) and such that if we forget the direction on the edges, we obtain \(A \).

The theorem is a fairly straightforward corollary of the following two lemmas:

Lemma 1: (1) Suppose \(B \) is a finite graph. Then

\[
B \in C \iff B \text{ has a } \mathcal{D} \text{-orientation.}
\]

(2) If \(B \in C \) and \(A \subseteq B \), then \(A \leq B \) iff there is a \(\mathcal{D} \)-orientation of \(B \) in which \(A \) is closed.

Lemma 2: If \(A \leq B \in C \) then any \(\mathcal{D} \)-orientation of \(A \) extends to a \(\mathcal{D} \)-orientation of \(B \).