Model-theoretic constructions for ω-categorical structures

David M Evans
School of Mathematics,
UEA, Norwich, UK.

Hattingen, July 2003.
ω-categoricity

NOTATION: L a first-order language; M a countably infinite L-structure.

DEFINITION: M is **ω-categorical** if every countable model of $Th(M)$ is isomorphic to M.

FACTS: (Engeler, Ryll-Nardzewski, Svenonius) Let $G = \text{Aut}(M)$. Then M is ω-categorical iff G has finitely many orbits on M^n (for all $n \in \mathbb{N}$).

Orbits: $\{(ga_1, \ldots, ga_n) : g \in G\}$ for $(a_1, \ldots, a_n) \in M^n$.

If M is ω-categorical then:

G-orbits on M^n correspond to complete n-types over \emptyset.

NOTE: If M is ω-categorical, then it is **locally finite**: any finitely generated substructure is finite.
Constructions of ω-categorical structures

1. **Examples in nature:**

 - Pure set Ω (automorphism group $\text{Sym}(\Omega)$)
 - (\mathbb{Q}, \leq) (Cantor’s theorem)
 - Vector spaces $V(\omega, q)$ over finite fields
 - ...

2. **New structures from old ones:**

 - Finite products; covers.
 - Any structure interpretable in a ω-categorical structure is ω-categorical. For example:
 - n-sets from a pure set $([\Omega]^n$ with $\text{Sym}(\Omega)$ as automorphism group)
 - Reducts (mysterious, but interesting)

3. **Boolean powers:**

 - Important in, for example, ω-categorical groups.

4. **Amalgamation methods:**

 - The main focus of this talk.
Amalgamation: the basic Fraïssé construction

A class C of finite L-structures is an amalgamation class if:

- C has countably many isomorphism types
- C is closed under substructures
- (Joint embedding) Any two structures in C can be embedded in a third
- (Amalgamation) If $A, B_1, B_2 \in C$ and $f_i : A \to B_i$ are embeddings there exists $C \in C$ and embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_2$.

Given this, there exists a chain of structures in C:

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots \subseteq M_i \subseteq \cdots$$

such that:

- Every structure in C is isomorphic to a substructure of some M_i
- If A is a substructure of M_i, and $B \in C$ and $f : A \to B$ is an embedding, then there exists $j \geq i$ and an embedding $g : B \to M_j$ such that $g \circ f$ is the identity on A.

Let $M = \bigcup_{i \in \mathbb{N}} M_i$. Then:

1. M is countable and locally finite
2. $\text{Age}(M) = C$
3. If $A \subseteq M$ is a finite substructure, $B \in C$ and $f : A \to B$ is an embedding, then there exists and embedding $g : B \to M$ with $g \circ f$ the identity on A.

Moreover, using a back-and-forth argument:

- Properties 1, 2, 3 determine M up to isomorphism
- ((Ultra-)Homogeneity) Any isomorphism between between finite substructures of M extends to an automorphism of M

Refer to M as the Fraïssé limit or generic structure of the amalgamation class C.
Theorem: (R. Fraïssé) A (locally finite) countable structure M is homogeneous iff $\text{Age}(M)$ is an amalgamation class.

Notes:
1. Homogeneous structure M is ω-categorical iff it is locally finite and for each $n \in \mathbb{N}$ there are finitely many isomorphism types of n-generator substructures of M.
2. An ω-categorical structure is homogeneous (in this sense) iff it has QE.

Examples of Amalgamation Classes:

1. Finite graphs (- Fraïssé limit is the random graph)
2. Finite graphs omitting the complete graph on n vertices (n fixed)
3. Finite digraphs
4. Finite digraphs omitting a given set of tournaments
5. Finite posets
6. Finite distributive lattices
7. Finite groups (- Fraïssé limit is Philip Hall’s countable universal locally finite group)

In Examples 1-4 we can take amalgamation to be *free amalgamation*. In all cases apart from 7, the limit is ω-categorical.
Variations on the basic construction

IDEA: Work with a class \mathcal{K} of finite L-structures and a notion:

$$A \sqsubseteq B$$

pronounced ‘A is a nicely embedded substructure of B.’ Demand the amalgamation property only over *nicely embedded* substructures. More formally, work with \sqsubseteq-embeddings $f : A \to B$ - meaning $f(A) \sqsubseteq B$. We’ll *assume* that these embeddings include isomorphisms; are closed under composition (so \sqsubseteq is transitive); and under restriction of the codomain.

Say that $(\mathcal{K}, \sqsubseteq)$ is an *amalgamation class* if:

- \mathcal{K} is closed under \sqsubseteq-substructures
- \mathcal{K} has countably many isomorphism types
- (Joint embedding) Any two elements of \mathcal{K} can be \sqsubseteq-embedded in a third.
- (\sqsubseteq-Amalgamation) If $A, B_1, B_2 \in \mathcal{K}$ and $f_i : A \to B_i$ are \sqsubseteq-embeddings, there exist $C \in \mathcal{K}$ and \sqsubseteq-embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_2$.
Theorem: There is a structure M satisfying:

1. M is the union of a chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of members of \mathcal{K}
2. Any member of \mathcal{K} is isomorphic to a \subseteq-substructure of M
3. If $A \subseteq M$ is finite and $f : A \to B \in \mathcal{K}$ is a \subseteq-embedding there is a \subseteq-embedding $g : B \to M$ with $g \circ f$ the identity on A.

Moreover M is uniquely determined by these properties and any isomorphism between finite \subseteq-substructures of M extends to an automorphism of M.

Notes:

1. We will call M here the *generic structure* for the class (\mathcal{K}, \subseteq).

2. Suppose there are only finitely many isomorphism types of structures in M of any finite size. Suppose also that there is a function $F : \mathbb{N} \to \mathbb{N}$ with the property that if $B \in \mathcal{K}$ and $X \subseteq B$ has size $\leq n$ then there exists $A \subseteq B$ containing X and $|A| \leq F(n)$. Then M is ω-categorical.

Example: (Not ω-categorical) Let \mathcal{K} be the class of finite digraphs in which the number of edges coming out of any vertex is at most 2. Write $A \subseteq B$ to mean that there are no edges coming out of A (in B).

(Puzzle: Take the generic here and forget the direction on the edges. Describe the resulting graph.)
Hrushovski’s construction

Work with graphs.
Let \(\alpha \) be a fixed positive real number. If \(B \) is a finite graph define the **predimension** of \(B \) as:

\[
\delta(B) = |B| - \alpha e(B)
\]

where \(e(B) \) is the number of edges in \(B \). If \(A \subseteq B \) write

\[
A \preceq B \iff \delta(A) < \delta(B_1) \text{ whenever } A \subset B_1 \subseteq B.
\]

NOTES:
1. Compare with dimension in a vector space.
2. There is a related notion \(A \preceq^* B \): have \(\leq \) rather than \(< \).

Lemma:
1. If \(A \preceq B \preceq C \), then \(A \preceq C \).
2. If \(X \subseteq B \) and \(A \preceq B \), then \(A \cap X \subseteq X \).
3. If \(X \subseteq B \), then \(\bigcap\{ A : X \subseteq A \preceq B \} \subseteq B \).

Call the set in 3. the **closure** of \(X \) in \(B \).

Example: Take \(\alpha = 1/2 \). In each case \(B \) is the closure of the two points in \(X \):

![Diagram](image_url)
Definition: Let \(\mathcal{K}_0 \) consist of finite graphs \(A \) with \(\emptyset \leq A \): i.e. for every non-empty subgraph \(A_1 \) of \(A \) we have \(|A_1| - \alpha e(A_1) > 0 \).

Lemma: \((\mathcal{K}_0, \leq)\) is an amalgamation class.

Proof. Show that if \(A \leq B_1, B_2 \in \mathcal{K}_0 \) then the free amalgam \(E \) of \(B_1 \) and \(B_2 \) over \(A \) is in \(\mathcal{K}_0 \) and \(B_1, B_2 \leq E \). If \(F \subseteq E \) then \(F \) is the free amalgam over \(F \cap A \) of \(F \cap B_1 \) and \(F \cap B_2 \) and \(F \cap A \leq F \cap B_i \).

So the only calculation we really need is:

\[
\delta(E) = \delta(B_1) + \delta(B_2) - \delta(A) > \delta(B_1) > 0
\]

assuming we’re not in a trivial case where \(A = B_1 \) or \(A = B_2 \).

The generic for \((\mathcal{K}_0, \leq)\) is **not** \(\omega \)-categorical. The size of the closure of \(k \) points is not bounded by a function of \(k \).

Idea… for obtaining \(\omega \)-categoricity:

Take a continuous, increasing bijection \(F : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} \) with \(F(x) \to \infty \) as \(x \to \infty \). Let \(\mathcal{K}_F \) consist of all finite graphs \(B \) with

\[
\delta(A) \geq F(|A|)
\]

for all \(A \subseteq B \).

Observation: If \(X \subseteq B \in \mathcal{K}_F \) then the closure of \(X \) in \(B \) has size \(\leq F^{-1}(\delta(X)) \).

So if \((\mathcal{K}_F, \leq)\) has the amalgamation property, **then** it is an amalgamation class and the generic structure \(M_F \) is \(\omega \)-categorical.
How you choose F to obtain the amalgamation property depends on the α used to define the predimension.

EXAMPLES:

1. (Rational α; Hrushovski, 1988) Suppose $\delta(A) = 2|A| - e(A)$. Choose F right-differentiable (e.g. piecewise linear), with right derivative $F'(x)$ non-increasing and $F'(x) \leq 1/x$.

2. (Irrational α of ‘infinite index’; Hrushovski, 1988) Choice of F is more subtle.
Model-theoretic properties: ω-categorical case

1. (E. Hrushovski, 1988) Take α an appropriate irrational and a suitable F. The generic M_F is ω-categorical, stable, but not superstable. (-Counterexample to Lachlan’s Conjecture).

2. (E. Hrushovski, 1997) Take α rational and F growing sufficiently slowly. The generic M_F is ω-categorical, supersimple of finite SU-rank and not one-based.

3. (M. E. Pantano, 1995) Take α rational. By letting F grow slowly, we can obtain algebraic closure growing as fast as we like in M_F.

4. Can work with relations of higher arity to obtain multiply transitive structures in all of the above.

5. By suitable choice of $F(x)$ for small x we can ensure that, for example, the smallest cycle in M_F is a 5-cycle. This is the only known way of constructing an ω-categorical connected graph whose smallest cycle is a 5-cycle and whose automorphism group is transitive on pairs of adjacent vertices.

6. If (\mathcal{K}_F, \leq) is a free amalgamation class, then M_F does not have the strict order property (- it is $NSOP_4$).

Open Problem: Can algebraic closure grow arbitrarily quickly in stable ω-categorical structures? (In a finite language?)

Strange Problem: Is there a suitable choice of F for all α (- so irrational α not of infinite index)?
Model-theoretic properties: the unconstrained case

- $\delta(B) = |B| - \alpha e(B)$
- $A \leq B$ iff $\delta(A) < \delta(B_1)$ for all $A \subset B_1 \subseteq B$
- \mathcal{K}_0: $\emptyset \leq A$
- (\mathcal{K}_0, \leq)-generic: M_0
- $A \preceq^* B$ iff $\delta(A) \leq \delta(B_1)$ for all $A \subseteq B_1 \subseteq B$
- \mathcal{K}_0^*: $\emptyset \preceq^* A$
- $(\mathcal{K}_0^*, \preceq^*)$-generic M_0^*

NOTE: If α is irrational then \leq and \preceq^* coincide.

1. (J. Baldwin and S. Shelah, 1997; S. Shelah and J. Spencer, 1988) If $0 < \alpha < 1$ is irrational, then $\text{Th}(M_0)$ is stable and has the finite model property. It is the almost-sure theory of finite graphs on n vertices with edge probability $1/n^\alpha$ (as $n \to \infty$).

2. (E. Hrushovski, 1988) If α is rational then $\text{Th}(M_0^*)$ is ω-stable (of infinite Morley rank).

3. (DE, 2003; related earlier work of M. Pourmahdian) Take $\alpha = 1/2$. Then $\text{Th}(M_0)$ is undecidable and has the strict order property.
Sketch of 3.

Work with $\delta(A) = 2|A| - e(A)$.

IDEA: Already observed that closure of a pair of points can be arbitrarily large (by taking vertices adjacent to both vertices in the pair). Use this to encode finite graphs (Γ, E) into these closures in a uniform way.

This encodes the graph Γ (-marked in red) as a graph A_Γ (-edges in black). We have $A_\Gamma \in \mathcal{K}_0$ and all vertices of A_Γ are in the closure of a, b.
Let $\chi(a, b)$ denote the L-formula which says that this picture is accurate (so $V(a, b)$ the set of vertices adjacent to a, b has no edges in it etc.). If $A \in \mathcal{K}_0$ and $A \models \chi(a, b)$, then we interpret a graph in A with vertex set $V(a, b)$ and edges determined by $S(a, b)$.

Given any first-order sentence ϕ in the language of graphs we can write down an L-formula $\theta(a, b)$ such that for any graph Γ:

$$\Gamma \models \phi \iff A_\Gamma \models \theta(a, b).$$

Theorem: With this notation, there is a finite graph Γ which is a model of ϕ iff $M_0 \models \exists a, b(\chi(a, b) \land \theta(a, b))$.

Proof: (\Rightarrow) Use $A_\Gamma \leq M_0$.

(\Leftarrow) Take such a, b. The closure in M_0 of a, b is finite, so the graph interpreted in M_0 by $V(a, b)$ and $S(a, b)$ is finite. By construction of θ it is a model of ϕ. □

This gives undecidability of $Th(M_0)$ by Trakhtenbrot’s Theorem.

For the strict order property note that we can construct a family of finite graphs in which arbitrarily large finite linear orders are uniformly interpretable. Translating this into the A_Γ, and using compactness, there is a model of $Th(M_0)$ in which an infinite linear order is interpretable (using two parameters).

Problem: Does $Th(M_0)$ have the finite model property?
Some references:

