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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 64. Number 1. March 1999 

SIMILAR BUT NOT THE SAME: 
VARIOUS VERSIONS OF 4 DO NOT COINCIDE 

MIRNA DZAMONJA AND SAHARON SHELAH 

Abstract. We consider various versions of the 4 principle. This principle is a known consequence of 

0. It is well known that or is not sensitive to minor changes in its definition, e.g.. changing the guessing 

requirement form "guessing exactly" to "guessing module a finite set". We show however. that this is not 

true for 4. We consider some other variants of 4 as well. 

?1. Introduction. In this paper we consider various natural variants of 4 princi- 
ple. We answer questions of S. Fuchino and M. Rajagopalan. 

The principle was introduced by A. Ostaszewski in [7]. It is easy to see that 4 
follows from 0, and in fact it is true that 0 is equivalent to 4 + CH, by an argument 
of K. Devlin presented in [7]. By ([10, ?5]) 0 and 4 are not equivalent, that is, 
it is consistent to have 4 without having CH. Subsequently J. Baumgartner, in an 
unpublished note, gave an alternative proof, via a forcing which does not collapse 
N, (unlike the forcing in [10]). P. Komjaith [5], continuing the proof in [10, ?5] 
proved it consistent to have MA for countable partial orderings +--CH, and 4. 
Then S. Fuchino, S. Shelah and L. Soukup [2] proved the same, without collapsing 

1 . 

The original R. Jensen's formulation of 0 ([3]) is about the existence of a sequence 
(Aa : 8 < co, ) such that every At is an unbounded subset of 8, and for every 
A E [coI]f , we have A no = Ab stationarily often. Many equivalent reformulations 
can be obtained by using coding techniques (see [6]). As a well known example, we 
mention K. Kunen's proof ([6]) that 0- is equivalent to 0. Here 0- is the version 
of 0 which says that there is a sequence 

(Af? n < co} US: < co,1 

each A6 C 8, and for every A E [colwf], we stationarily often have that A n 8 = A6 
for some n. 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF 4 DO NOT COINCIDE 181 

We consider the question asking if 4 has a similar invariance property. To be 
precise, we shall below formulate some versions of 4, and ask if any two of them 
are equivalent. We are particularly interested in those versions of 4 which have the 
property that the parallel version of 0 is equivalent to 0. The main result of the 
paper is that almost all of the 4-equivalences we considered, are consistently false. 

Versions of 4 which are weaker than the ones we consider, are already known 
to be weaker than 4. Namely, in his paper [4], I. Juha'sz considers the principle 4' 
claiming the existence of a sequence 

((At: n < co): 8 limit < co,) 

where for any 8 sets { A' n < co } are disjoint, and such that for every A E [co,]1l 
there is 8 such that for all n we have sup(A6 n c1o) = 8. I. Juha'sz shows that 4' is 
true in any extension by a Cohen real. 

We heard of the question on the equivalence between 4 and 4 from F Tall, who 
heard it from J. Baumgartner. J. Baumgartner credited the question to F. Galvin, 
who credited it to M. Rajagopalan. And indeed, M. Rajagopalan asked this ques- 
tion in [8], where he introduced 4 (denoted there by 4F) . In the same paper M. Ra- 
jagopalan also introduced 42 (denoted there by 4$?) and showed that CH + 42 
suffices to construct an Ostaszewski space. He also asked if 42 was equivalent to 
4. The answer is negative by Theorem 2.1 below. 

Most of the other equivalence questions we consider here were first asked by 
S. Fuchino. 

We now proceed to give the relevant definitions. 

DEFINITION 1.1. We define the meaning of the principle 41 for / ranging in 
{O, 1, 2,.*} and T a limit ordinal < co,. (If T = co then we omit it from the 
notation.) 

CASE 1. I0. 

For some stationary set S C co, n LIM, there is a sequence (A,: 8 E S) such 
that 

(a) A, is an unbounded subset of 8. 

(b) otp(A6) = T. 0 

(c) For every unbounded A C co,, there is a 8 such that Aj C A. 

CASE 2. 1 = 1. 

For some stationary subset S of co, n LIM, there is a sequence ( A 8: S) such 
that 

(a) A6 is an unbounded subset of 8. 

(b) otp(A6) = T. 
(c) For every unbounded A C co,, there is a 8 such that I A6 Ai < No. 

CASE 3. I = 2. 

For some stationary S C co, n LIM, there is a sequence 

({A: n <c} :8 E S) 

such that 

(a) Each A'J is an unbounded subset of 8. 
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182 MIRNA DZAMONJA AND SAHARON SHELAH 

(b) otp(A'5l) = T. 
(c) For every unbounded A C co,, there is a 8 and an n such that A', C A. 

CASE 4. l=. 

For some stationary set S C co, n LIM, there is a sequence 

({A, : iin<i?n*()} 8 a S) 

such that 

(a) Each A(1 is an unbounded subset of 8. 
(b) otp(A61) = T. 
(c) For every unbounded A C co,, there is a 3 and an m < m*(J) such that 

An C A. 
(d) For all relevant 6, we have m* (6) < co. 

In the above, LIM stands for the class of limit ordinals. 

REMARK 1.2. 
(1) One could, of course, consider the previous definitions with co, replaced by 

some other uncountable ordinal, in fact an uncountable regular cardinal. As our 
proofs only deal with co,, we only formulate our definitions in the form given above. 

Also, we could consider principles of the form $1 (T) in which T is a stationary 
subset of co, and parameter 3 in the above definitions is allowed to range only in T 
(i.e., S n T). 

(2) The definition that A. Ostaszewski [7] used for a 4-sequence (A : 8 c S) 
requires that for each A E [cowif8 there is a stationary set of 8 such that A(, C A. It is 
well known that this is equivalent to our definition of 4$. Hence 46 is the usual 4 
principle of Ostaszewski, and we shall often omit the superscript 0 when discussing 
this principle, and freely use the equivalence between the definitions. 

It is obvious that 46 , > = 
1 4 462, and that 4$ ? 4 $ 462. The result 

of the first Sections 2 and 3 of the paper is that, except for the following simple 
theorem, the above are the only implications that can be drawn. 

THEOREM 1.3. 

(1) Suppose that T1, T2 < ol are limit ordinals and that 4T1 and 4T. both hold. 
Then 4T1.T2 holds. 

(2) 4T1 T2 y ,T for T1 limit< co, and T2 < 01o. Similarlyfor the other versions 
of 4 considered. 

PROOF. 

(1) Let ( Al : s c SI ) for 1, 2 exemplify 4,6. For s c lim(SI) n S2 we let 

B6 U A la Bax J A,. 
cCeA26 

Hence Bus is an unbounded subset of 8. 
Suppose that A E [cojf. For each ar < co,, the set A K ar is an unbounded 

subset of co,, hence contains stationarily many A'l as subsets. So we can find an 
unbounded subset T, = T, [A] of SI such that 

T, ETj = A l C A - sup( T1 n a). 

This content downloaded from 90.24.160.187 on Fri, 21 Feb 2014 05:52:08 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF 4 DO NOT COINCIDE 183 

Now we can find a 8 c lim(S1) n S2 such that A 2 C T1. Hence Be C A and B. is 
unbounded in 6. Moreover, otp(Ba) = T. T2- 

We have shown that K Be: 8 c lim(S1) n S2 & otp(B(5) = T 2) witnesses that 
461? .-f, holds (note that the fact that the set of relevant 8 is stationary follows from 
the previous paragraph). 

(2) Easy. - 

The questions considered in the paper are answered using the same basic tech- 
nique, with some changes in the definition of the particular forcing used. A detailed 
explanation of the technique and the way it is used to prove that 41 does not im- 
ply 40, is given in ?2. The changes needed to obtain the other two theorems are 
presented at the end of ?2 and in ?3. 

?2. Consistency of 41 and ?460. 

THEOREM 2.1. CON(4'1 +$). 

PROOF. Throughout the proof, x is a fixed large enough regular cardinal. 
We start with a model V of ZFC such that 

V tr 0(col) + 211 = N2, 

and use an iteration Q K Pr , : a _< C?2 & fi < (02 ). The iteration is defined in 
the following definition. 

DEFINITION 2.2. 
(1) By a candidate for a 4, we mean a sequence of the form ( Ax :8 < co, limit), 

such that Ax) is an unbounded subset of 6, with otp(A6) = co. 
(2) In V, we fix a continuously increasing sequence of countable elementary 

submodels of (T(x), A) <9, call it N - (K : i < co, ), such that 

le(Nj) C U Ni? 
i<Cw' 

(this is possible by CH), and K NO? j < i ) E Ni? for i < co,. 
(3) During the iteration, we do a bookkeeping which hands us candidates for 4. 
(4) Suppose that fi < CO2, and let us define Qp, while working in VP/3. 
(a) Suppose that CH holds in V'I3 and the bookkeeping gives us a sequence 

- K Af. : 8 < co, a limit ordinal) which is a candidate for 4. For some club 

Ep of c1 we choose a continuously increasing sequence = (Nf i E 13) of 
countable elementary submodels of (T(x) e, <), such that we have 

T(NO C- U NA/f 

and such that for every i E E we have NiP n V = Nj?, while 

(N: j < i) E Nl( 
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184 MIRNA DZAMONJA AND SAHARON SHELAH 

Furthermore, AJ c Nl.in(E,. Then Qp = Qfli,3 is defined by 

Qdelff if {Ad f {:(i) f is a partial function from coI to {O, 1 } 

(ii) otp(Dom(f)) < co' 

(iii) f F(Nfl n co,) c Nfllll(y\il for i e Efl i M~~imn(EpN-(i-l1))'orIeE 

(iv) f - ({ 1}) n AP? 0 =>. I Domz(f) n Af. i < No 

(v) f C V}. 

(b) If --CH, then Qfl 0. (Of course, our situation will be such that this case 
never occurs.) 

In Q., the order is given by 

f < g - g extends f as a function. 

(5) For a < C02, we define inductively 

def 
Pc { p Dom(p) c [ce]"'8 & (Vfl c Dom(p)) 

(p(fl) is a canonical hereditarily countable over Ord 

Pp-name of a member of Qp, and p B U-ps "p(fl) ? Qj") }. 

The order in P, is given by 

p < q (i) Dom(p) C Dom(q). 

(ii) For all f, < e. we have q B I- "p(fl) < q(,B)". 

(iii) { y E Dom(p) : p(y) z& q(y) } is finite. 

DEFINITION 2.3. Suppose a < C02, and p < q c P. Then 

(1) We say that q purely extends p, if q [ Dom(p) = p. We write p ?pr q. 

(2) We say that q apurely extends p, if Dom(p) = Dom(q). We write p <ap, q. 
(3) The meaning of p >pr q and p >apr q is defined in the obvious way. 

DEFINITION 2.4. Suppose that y < co,. A forcing notion P is said to be purely 
y-proper if: 

For every p c P and a continuously increasing sequence K Ni: i < y) 
of countable elementary submodels of (T(X), c, <x) with p, P c NTo, 

(JN: j ? i) C Ni+l, there is a q >pr p which is (Ni, P)-generic for all 
i < y. 

FACT 2.5. A ccc forcing notion is purely y-proper for every y < Col. 

PROOF OF THE FACT. This is because every condition in a ccc forcing is generic, 
see [9, III, 2.6 and 2.9]. - 

General facts about the iterations like the one we are using. 

FACT 2.6. Iterations with the support we are using, have the following general 
properties: 

(1) a < ,B P., C Pp as ordered sets. 
(2) (aE < fi & q C Pp)= (q caC PO &q ca <q). 
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(3) (a< fl &p E Pp&p a< q E PO,) qU(p ja, )) E Pistheleastupper 
bound of p and q. 

(4) If a < /3, then P, <o Pp. Hence, Gpl /Gpa gives rise to a directed subset of 
Q, over V[Gp]. 

(5) If ( Pi: i < i* < co, ) is a <p,-increasing sequence in P,* for some a*c< C02, 
def then p = ui<i* pi is a condition in P,* andfor every i < i* we have Pi <pr P. 

(6) Pure properness is preserved by the iteration. Moreover, for any y < co,, pure 
y-properness is preserved by the iteration. 

PROOF OF THE FACT. 

(1)-(5) Just checking. 
(6) The statement follows from some more general facts proved in [9, XIV]. 

A direct proof can be given along the lines of the proof that countable support 
iterations preserve properness, [9, III, 3.2]. A 

Back to our specific iteration. 

CLAIM 2.7. Suppose a*< <C2. In VP-*, the forcing Qcr* has the ccc. Moreover, it 
has the property of Knaster. 

PROOF OF THE CLAIM. We fix such an ca* and work in VP-*. We assume CH, as 
otherwise we have defined Q,* as an empty set. 

def 
Hence sequences N9 = (Nia : i c E,,* ) and (A' 8 < co, limit) are given. 

Let 

E ={8 f E,>*: NOa* n w, = }, 

so E is a club of co,. Suppose that q,, E Qa, for a < wo1 are given. Let 

def 
A = {8 U E : for some a c E as we have 8 > sup(8 n Dom(q,)) }. 

A contains a final segment of acc(E), as otherwise we can find an increasing sequence 
(6i : i < coa( ) from acc(E) - A. Choose a > sup{ 81 i < cot } with a c E. Hence 
for all i < cot we have that 6i- sup[Dom(q) n 8j], which is in contradiction with 
otp(Dom(qj)) < cot. 

Let C be a club such that A D C. For 8 c C, we fix an ordinal of witnessing 
that 3 E A. So a6 c E -8 s and 3 > sup(3 n Dom(qa)). 

For 8 c C, let g(8) be defined as the minimal ordinal E E such that q,, E Nc,) 

(note that g is well defined). Hence, the set of 8 c C which are closed under g, is a 
club of co,. Call this club Cl. 

Note that there is a stationary S C C, such that for some 4* we have 

8 c S s sup(8 n Dom(q,,,)) 

Now notice that for 81 < 82 E C, we have 

Dom(q,,,) C N.,* n o = a6,- 

So, if 61 < 82 E S, we have 

Dom(q,,,) n Dom(q,,, ) c ad, n Dom(qe< ) C * 
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186 MIRNA DZAMONJA AND SAHARON SHELAH 

def 
Now let s* = min(S), so 8* > 4*. By (iii) in the definition of Q for every 
8 c S we have 

q,,a,6 1(Dom(q,) r d) =(q, [(Dom(qa) n A*))[F* e Nmia(E ia* ?1)) 

So, there are only countably many possibilities, hence we can find an uncountable 
set of ab such that q,, are pairwise compatible. -A 

REMARK 2.8. ccc orders like the one above were considered by Abraham, Rubin 
and Shelah in [1]. 

CONCLUSION 2.9. For all a <? c2, the forcing PO, is purely y-proper for all y < col . 

[Why? By Fact 2.5, Fact 2.6 (6) and Claim 2.7.] 

CLAIM 2.10. The following holdfor every a* <? c02: 

(1) In PO,*, if p < r, then for some unique q we have 

P <pr q ?apr r & (ca E Dom(q) & q(ca) V& r(a) # a ? Dom(p)). 

(2) The following is impossible in P,*: 

There is a sequence ( qi i < co, ) which is <pl-increasing, butfor which 

there is an antichain ( ri i < co, ) such that q <?apr ri. 
(3) Ifp E PO * andz is a PO,* -name ofan ordinal, then there is q E PO,* with p < pr q, 

and a countable antichain I C { r: q <apr r } predense above q, such that each 

r E I forces a value to -. 

(4) If a* < c02, then IFp, "Qa* I 
(5) If a* <c02, then VP-* iCH. 
(6) Qa* is closed under finite unions of functions which agree on their common 

domain. 

(7) VP-* 1= 2", = -2 

(8) P,* satisfies 82-cc. 

PROOF OF THE CLAIM. 
def U 

(1) Define q by q p u (r [(Dom(r) -. Dom(p)). 

(2) We prove this by induction on oa*. The case o* = 0 is vacuous, and if oa* is 
a successor ordinal, the statement easily follows from the fact that each Qa has the 
property of Knaster. 

Suppose that o* is a limit ordinal and ( qi i < co, ), (r i < co, ) exemplify a 
contradiction to (2). For i < co, let 

def 
wi{ = a Dom(qj) ri(a) #& qjiY) }, 

hence wi is a finite set. Without loss of generality, we can assume that sets wi (i < cof) 

form a A-system with root w*. Let /P* d Max(w*) + 1, so /P* < a*. 
Now notice that 

a E Dom(ri) n Dom(r1) & --(ip-, "ri(ca), rj(ae) are compatible") 

implies that ar c w*, for any i, j < co,. Hence, ( q E[/*: i < co, ) and K ri [/* i < 

co, ) exemplify that (2) fails at fl*, contradicting the induction hypothesis. 
(3) We work in VP-*. Fix such p and z. Let J be an antichain predense above p, 

such that every r E J forces a value to z. 
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We try to choose by induction on i < co, conditions pi, ri such that 

* PO - P 
* < i 'Pjt <pr Pi, 
* E EJ 
* Pi <apr ri, 
* < i ==> riIr1. 

If we succeed, (2) is violated, a contradiction. 
def def So, we are stuck at some i* < wi. We can let q - pi* and I-{ ri i < i* }. 

(4) Obvious from the definition of Q,*. 
(5) Can be proved by induction on a*, using (3) and (4). 
(6) Just check. 
(7) Follows from the definition of Pa,*, part (3) of this claim, and the fact that 

V l= 2'1 = N2. 

(8) By 2.2(5) and part (4) of this claim (see [9, III, 4.1] for the analogue in the 
case of countable support iterations). - 

CLAIM 2.11. It is possible to arrange the bookkeeping, so that IFp, -14. 

PROOF OF THE CLAIM. As usual, using Claim 2.10(7), it suffices to prove that for 
every ae* < w02, in VP-* we have 

IFQ"* "( A' : s < wi, ) is not a 46-sequence." 
def de Let G be Q* -generic over VP-*, and let F U G. Let A d- F1({0}). Suppose 

that A D Ac for some 6. Then for every f E G we have f -l({1}) n A' 0, so 

Dom(f)n4A <No. 
However, the following is true: 

SUBCLAIM 2.12. The set 

JV d{f E Qa*: {Dom(f) nA'* I No8 or f 1{l) na A' & 0} 

is dense in Qa*. 

PROOF OF THE SUBCLAIM. Given f E Qu. If Dom(f) n A'* is infinite, then 

f E J. Otherwise, let , d-f min(A ) c' Dom(f). Let g de f U {(fl, 1)}, hence 
g ? f andg E Y. - 

We obtain a contradiction, hence A is not a superset of Ac . -1 

DEFINITION 2.13. Suppose that 

(a) y < cow, 
(b) N = ( Ni : i < y ) is a continuous increasing sequence of countable elementary 

submodels of ( e(Z,) A <x) 
(c) a, Q E No and p E PeP 12 n No, 
(d) p IF- '"r C [co,]8" and 

(e) N [(i + 1) E Nj+j for i < y. 
We say that E < y is bad for (N, a, p, Q) if E is a limit ordinal, and there are no rn, 

/E NE (n < w) such that 
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(2) Uw /A, =N. n oAl, 
(3) r, > p for all n, 
(4) A/ increase with n, 
(5) for some no wE c the set { r,, n >no } has an upper bound in P(,, 
(6) Frpg d rKr: n < co) and P - - rEBp.T 

n < co) are definable in 

(,(,) v, ., <) from the isomorphism type of ((N: < ? ), p, T, Q) (we 
shall sometimes abbreviate this by saying that these objects are defined in a 
canonical way). 

MAIN CLAIM 2.14. Suppose that N, y, p and T are as in Definition 2.13. Then the 
set 

def B =-{e < y :e badfor (A,T,p,Q )} 

has order type < co'w. 

PROOF OF THE MAIN CLAIM. We start by 

SUBCLAIM 2.15. Let N, y, p and T be as in the hypothesis of Claim 2.14. Then, we 
can choose canonically a sequence P K Py: j < coy ) such that 

(1) P is <p,-rincreasing. 
(2) PO = P. 
(3) For i < y and n < co, we have that pCoi+11 E Ni+,. 
(4) For each i < y, for every formula V (x, y) with parameters in Ni, there are 

infinitely many n such that one of the following occurs: 
(ax) For no p' > Pwji+,, do we have thatfor some y, the formula q(p', y) holds. 
(fi) For the <-first r > PC0i +n such that qi(r, y) holds for some y, we have 

r >apr Pwi+n+l 

(5) For j < coy a limit ordinal, we have Pi = Ui<j Pi 

PROOF OF THE SUBCLAIM. We prove this by induction on y, for all N and p. 
If y = 0, there is nothing to prove. 
If y < co, is a limit ordinal, we fix an increasing sequence( KYk: k < co ) which 

is cofinal in y, such that yo 0 0 (we are taking the <*-first sequence like that). By 

induction on k we define ( Py: COYk < i < COYk+1 ). We let Po = p. At the stage k of 
the induction we use the induction hypothesis with Pw'k, K Nj: CWYk < i <? WYk+I ) 

here standing for p, N there, obtaining ( Pi: WOYk < i < ?OYk+l ), noticing that 

PWEk ENC,)Yk;l. We define P deYk?+df U1<(,. p1. We thus obtain 

( WP ( Yk < i <? WYk+l) 

in V. As the parameters used are in Nw0Yk+1, by the fact that our choice is canonical, 
we have that K Pi : Wyk < i <? WYk+1 ) E Nt)Yk?+1.+1 

Suppose that y = y' + 1. By the induction hypothesis, we can find a sequence 
K P/ j < CWy') satisfying the subclaim for p and N Iy'. As N Ly E Ny, again we 

def 
have that the sequence K pj j < Wly' ) is in N2,. Let pcy< d = 

Uj<(0y / Pi 

We list as ( V" = Vn: n < co) all formulas V (x, y) with parameters in N2,,, so 
that each formula appears infinitely often, picking the <-first such enumeration. 
By induction on n < cW, we choose Pojy"+n2 We have already chosen p(,,/. 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF 4 DO NOT COINCIDE 189 

At the stage n + 1 of the induction, we consider Vn. If (ao) holds, we just let 

POw'+n+i Pwe'+n. Otherwise, there is a condition r > Po'+n such that Vt,, (r, y) 
for some y. By elementarity, the <k-first such r is in Ny/+1 . By Claim 2.10 (1), there 
is a unique q such that r >apr q >pr Pwl"+n and 

a E Dom(q) & r(oa) 7 q(o() Roe E Dom(p). 

def 
Hence, q E N<,,+l and we set Poy+n+l= q. 

We now choose 
- 

as in the Subclaim, using our fixed y, N, T and p. 

NOTE 2.16. For every limit E < y we have that Dom(po,) NE n 002. 

[Why? Let i < cow be given, and let af E Ni n 02. Consider the formula qi(x, y) 
which says that x = y E P,,2 and o E Dom(x). This is a formula with parameters 
in Ni. Option (ao) from item 2.15 of Subclaim 2.15 does not occur, so there is in 
and r >apr Pwi+in such that q(r, y) holds for some y. Hence 

ae E Dom(r) = Dom(pci+,,,) C Dom(p.t(i+1)). 

So Ni n OS C Dom(p,(i+I)), and hence No n c02 C Dom(po,). 
On the other hand, if oa E Dom(po,), there is i < E such that ar E Dom(po,,i) C 

Ni+1 C NE.] 

OBSERVATION 2.17. Suppose ar < c02, while q E Pa, and w E [Dom(q)]<8O. Then 
there is q+ > q in Pa, such that 

(*)W If i E w U { j e Dom(q): q(j) 4 q+(j) }, then q+(i) E V (an object), and 

not just q+ pi 1- "q+(i) E V" (not just a name). 

[Why? By induction on oa. The induction is trivial for a = 0, and in the case of 
ar a limit ordinal it follows from the finiteness of w. Suppose that ar = + 1. We 
have q h H- "q(fl) E V", so we can find r E PA such that r > q pfl, and A such that 
r HF "q(fl) A". Now apply (*)P with r in place of q and 

(wn/3)u{j :r(j)7?q(j)} 

to obtain q, . Let q+ = { l A)} 

Continuation of the proof of 2.14. Since p is <pr-increasing, the limit of i is a 
condition, say p*. Now let q* > p* be the <-first such that q* I- ",8 E T" for some 

/3> NY n col, and with the property 

[oa E Dom(p*) & p* (o) #4 q* (a)] > q* (a) an object, 

def 
which exists by Observation 2.17. Let wd { oE e Dom(p*) p*(a) 4 q*(a) }. 

We now define 

b <{E?Y ( U Dom(q*((a))n(NEnc1)) isunboundedinNEncl}. 
aEw* 

NOTE 2.18. otp(b) < co''. 
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190 MIRNA DZAMONJA AND SAHARON SHELAH 

[Why? Suppose that Ej for j < co' are elements of b, increasing with j. Now, for 
every j < toP we know that N1j n t, is bounded in Nej_1 n ci, but 

U Dom(q*(oa)) n (Nej_, 0nc) 
aEW* 

is unbounded in Nj_? n Owo. Hence 

U Dom(q*(ae)) n [N1j n oi, N~j_1 n c,) + 0. 
aEw* 

However, by the definition of the forcing, 

otp (U Dom(q* (o))) < co(", 
aEw* 

a contradiction.] 
Continuation of the proof of 2.14. Our aim is to show that B C b (B was defined 

in the statement of the Main Claim). So, let 6* E (y + 1) ' b be a limit ordinal. We 

show that e* , B. We have to define F d T ,*.P. and - d ,*.P. so to satisfy 
(1)-(5) from the definition of B, and to do so in a canonical way, to be able to prove 
Subclaim 2.19 below, hence showing that (6) from Definition 2.13 holds. 

Let 

sudf [sup( U Dom(q* (a)) n N,* 01 ] + 1, 

so < N* no-i. WeenumerateN,*n w* as{o0o,..., an*-I}. ByNote2.16,wecan 
fix j* <6E* such that {jo,..., an* -lC Dom(pj*1). Let j* be the first such. Also 

let s df N,* n o1,. Now we observe that for all / < n*, we have q* (a, ) F E Ne,. 
[Why? Clearly, there is 6' < 6* such that {ogo, . . .c, ain*-15} C N.I. With N 

defined in Definition 2.2 (2), we have that N E No. Also, we have that 

0 1Fan*_l "Ed- n Ea. is club ofco", 
I<n* 

(cf. Definition 2.2 (4) (a). Hence, by properness and the choice of N, we have that 
for every E E [e', y], we have that 

0 1Ft,* -1 4N. n ,c E". 

def 
Let i = N.' n Wi, hence Ni? E NI'+i. In particular, we have 0 '1,K, "i C E" and 

NO c,< N* n o,. So for all < fn* we have 

q*(ayl) 4 q*(al) L(Ni n 0Wi), 

but 

0 IFS>, "N 0 Wi ni' 0o, ", 

hence by Definition 2.2 (4) (a) (iii), we have 

q Lc1 1- 
q (?t1)F E N in(E, X(i+l)) 

But 

0Oa, IF "min(Ea, \ (i + 1)) E NC,+ 5 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF 4 DO NOT COINCIDE 191 

hence 

q cea IF "q(cal) EN,+ 

By properness and the fact that q* (ca,) e V, we have q* (ca,) 4 E NE, +.] 
Let us pick the <*-first increasing sequence ( 6,: n < co ) such that * U< En 

while coj* + 1 < 60 and 4 E NeO, in addition to (V1 < n*)[q*(a,) Ne0] 

Defining rn and /fn. We do this by induction on n. If n = 0, we set ro = ps Eo, and 
also let mo 0 ?, do = . 

At stage n + 1, we assume that at stage n we have chosen rn E N,,,+, n Pt., and 
mn < co so that rn >apr PE,, +nf,, We also have chosen X,], ,SA E NE,,+. 

We define a formula ADZ (x, y) which says 
(1) x E P,2 and y is an ordinal > Max{fl,, NE, n c1}. 
(2) x F- "y' E r" for some y' > y. 
(3) If / < n then x(a,1) is an object, not a name, and x(a,1) = (a,) 
(4) For l < n*, we have x(ai) [C E NEo and Dom(x(a,)) C_ c 
(5) Forall awehave 

af c Dom(x) n Dom(pwe,,+m,,) & x (a) $4 pwE,+,,,,(a() 

C - { a ao, ....o-i}. 

Hence, p,2 is a formula with parameters in N,,,+, C N,,,+,. Also, we have that 
anp(q*, a) holds. 

By the choice of -, there is m,2+1 > mn (we pick the first one) such that for the 
<*-first r > p(,,+ )+,n,,+, for which there is y for which (pn(r, y) holds, we have 
r >apr Po)(E,,+1)+tn,,+1, We let 

rnZ+ = r U (PWC,1+n1,7+2 I Dom(pe,,+n+2,,?+,) -,. Dom(r)). 

Note that r +i c NE,,+,+1 and that (pn(rn+1,y) must hold for some y. The <-first 
such y is an element of N,,,+l+,, and we choose it to be fln+1. 

def 
Finally, we define Xn+l min(N,,,+? 

- 
sup{U1<,* Dom(rn+l (ac)) _' }) 

At the end, we obtain (canonically chosen) sequences (rn n <w ), (Kln : n < co), 
(n n < wo) and (Mn : n < wo ) such that 

(1) r, >?apr Pat, +m1,, - 

(2) 4o = 4 and Xn are strictly increasing with n. 
(3) For all / < n*, we have Dom(rn(a/1)) C _ C (n, 4n+i) and rn(ai) is an object. 
(4) rn2 IF- p,1 C T". 

(5) A,B.+ > fBn. 
(6) Un<a A= - NE* nol. 
(7) rnZ C Ne*. 

(8) For I < n *, we have rn] (ae) rX I (al(e ) 
(9) ae C { , C Dom(r,,) : rn(P) :14 Po),,+nq,Jfl/) } '=~ a?t C {t ? an*-} 

[Why? By item 2 in the definition of Al ] 
We will use rn, A,/ (n < co) to witness that 6* V B. It is true that rn > p and A,B 

increase with n, and their limit is N,* n c1. We need to show that for some no, the 
sequence rn (n > no) has an upper bound in Po,. The natural choice to use would 
be Un<(, rn, but this is not necessarily a condition! 
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192 MIRNA DZAMONJA AND SAHARON SHELAH 

[Why? By item 2 above, all r,2 for n > 0 agree on at such that at V {ao, ..,nc-1i} 
By items 2, 2. and 2 above, we even know that for every / < n*, the union 

U r,.(cE/) n <(a)) l<o.) 

is a function. If 6' < N* n 0 1, then for all / < n* we have 

U rn (al) [ - 
U rn(al ) [' 

n<w n<n' 

for some n' < co, so this is a condition in Q,, (by Claim 2.10 (6)). If b' > N*nl,, 
then Un<c rn (Ql) n ' is finite. However, it is possible that for some a/ it is forced 
that the intersection of the set 

U Dom(r,(oal)) 
nea 

with AN is infinite, so U,,<(, rn (al ) might fail to be a condition in Qa,.] 
Nflco1 

(We remark that it is because of this point that we are getting 41 and not 4 in 
VP.) 

Now, we define conditions q7 for / < n* as follows. First set ndf C02. By 
induction on / < n* we choose q* E P,,, so that 

(a) q7 < q7~1, 
(b) q7* Lca, is above rn Lca, for all n large enough. 

This clearly suffices, as qn** Uq* r(Dom(q*) - Dom(q**)) is a condition in PO, which 
is above all but finitely many rn. 

The choice of q*. Let qO* def q* LaO = p* [oao. Given q* E P,,, with 1 < W. We 
can find q** > q* in P,,, such that 

q 1* IF " 
min(A4j,, \ (o) 

a- 

for some ordinal (I. By item 3, above, the ordinal (I belongs to Dom(rn (a,)) for at 
most one n. Let n1 be greater than this n. Hence there is a condition q+ in P,,+i 
such that qjh (al) is an object and 

qj+ l = q** & qj+(al) > U r, (al) & q + (l)() =1. 
n>nfl 

Now let 

+- q U rn J[a + 1, 1+1)- 
n>nl 

Note that q7*+ (ao) is forced to be a function, for any ae E Dom(ql), as all rn agree 
on [ai + 1, a1+1). Also, q7 I (ax) is forced to be in V. 

Now, the sequence ( q , : I < n*) is as required. 
To finish the proof of the Main Claim, we need to observe 

SUBCLAIM 2.19. Suppose that N andM are two equally long countable continuously 
increasing sequences of countable elementary submodels of KT(Zx), , < >p P, Q) 
with QN = QM =Q, and F (f: i < lg(N)) is an increasing sequence of 
isomorphisms f i: Ni -> Mi. 

This content downloaded from 90.24.160.187 on Fri, 21 Feb 2014 05:52:08 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF 4 DO NOT COINCIDE 193 

Then, if fN p T and Fg UP , are defined, so are AM F(p).F(,) and r-RF(p).F(,)* Moreover 

PM F(p).F(j) 
- and 1 RF (p) F(z) Fr P. 

PROOF OF THE SUBCLAIM. Check, looking at the way ,8, r were defined. - 

To finish the proof of the Theorem, we prove 

CLAIM 2.20. IFpC, 41. 

PROOF OF THE CLAIM. We use the following equivalent reformulation of O in V: 
There is a sequence 

( Nb ( Nib: < ) ): 6 < cl) 
such that 

(1) Each N6 (Nib: i < ( ) is a continuously increasing sequence of countable 
elementary submodels ofT (Zx), e, <, p, T, Q), with NT nhow < ( and N6 L(i + 1) E 

N1'+1 for i < 6. Here, p, Q and T are constant symbols. In addition, ONO = Q. 
(2) For every continuously increasing sequence N KMNi: i < co, ) of countable 

elementary submodels of K (Zx) c, <, p, T, Q) such that ONO - Q, there is a 
stationary set of (5 such that for all i < (5 the isomorphism type of Ni and Ni' is 
the same, as is witnessed by some sequence of isomorphisms (f : i < ( ) which is 
increasing with i. 

For each limit ordinal A, let NJ = 
Ui<6 Ni. We define At: 

- ~~~~ ~~~~~~~~~def - 

If flg. pN, ,N 
is well defined, then we let A5 = Rang(flf .pN,\N, ). Other- 

wise, we let A6 be the range of any cofinal co-sequence in 5. Note that in 
any case A3 is an unbounded subset of 6 of order type co. 

We claim that KA,: 6 < co, ) exemplifies that VP l= 4'(col). We have to 
check that for every unbounded subset A of co, in VPO2, there is a 6 < oI with 
IA6 3AI < no. 

Suppose this is not true. So, there are p*, 1* exemplifying this, that is 
p* I[ E [cow f' and for all 6 we have IAM - T* | 0 

We fix in V a continuously increasing sequence N K i < co ) of countable 
elementary submodels of (x((), E, < p, T, Q) such that pNo = p* while TNo - 

and QNO is our iteration Q. In addition, N9 (i + 1) E Ni+j for all i. For every 
y < co,, we can apply Claim 2.14 to N (y + 1). Using this, we can easily conclude 
that the set 

def 

(b) ( is a limit ordinal 

(c) AN , i* and T- - are defined} 

is a club of co,. Lets6 c C be such that sequences N [ and KNib: i < 6 ) have the 
same isomorphism type. Let this be exemplified by F = ( f i i < s ), an increasing 
sequence of isomorphisms f i: Ni -> Nib. By our choice of constant symbols, we 
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194 MIRNA DZAMONJA AND SAHARON SHELAH 

also have that F(Q) Q, F(p*) = pNo and F(T*) = TNo. By Subclaim 2.19, we 
have that 

flJC3T6Ng No N = and F_ N6 NP = F I 

def- 
We now let (/f3n n < co) d3 N6 N6 By the definition of r and fl, there is 

N6p O.zC 0 

no and condition q such that q 1- "f/n c -c" for all n > no, and q > p*. Hence 
q I " IAs, - * I < 0o", which is in contradiction with the fact that q > p*. - 

NOTE 2.21. 
(1) We note that the present result clearly implies that 4 and r are not the same 

(even without CH). 
Clearly, VP-, k= 2'0 = 12 One of the ways to see this is to notice that under 

CH the full 4 and 461 agree (while VPO2 k 2'0 < ?2 obviously). 
(2) Note that the sequence (A6 : ( < a), ) exemplifying 41 in VP, is in fact a 

sequence in V. 

For clarity of presentations we decided to give details of the proof of Theorem 2.1 
rather than Theorem 2.22 below, which is of course stronger than Theorem 2.1. 
Now the obvious changes to the proof of Theorem 2.1 (just change the definition 
of Qfl) give 

THEOREM 2.22. CON(41 + i4b). 

In the next section we encounter another similar proof, where the changes needed 
to the proof of Theorem 2.1 are more significant, and we spell them out. 

?3. Consistency of 46 and ,461. 

THEOREM 3.1. CON(4 + 41). 

PROOF. The proof is a modification of the proof from ?2, so we shall simply 
explain the changes, keeping all the non-mentioned conventions and definitions in 
place. 

Our iteration is again called Q = P,, Ql: a <_ C02, 3 < c02 ), but Qp will be 
redefined below. 

DEFINITION 3.2. 

(1) A candidate for a 41 is a synonym for a candidate for 4. 
(2) Suppose that /3 < w2, and let us define Qp, while working in VP#. It is defined 

the same way as in Definition 2.2 (3), but we change the condition (a) (iv) into 
(iv') Dom(f) n Afl infinite ==* (30cy c Dom(f) n A#)[f(y) = 0]. 

NOTE 3.3. The following still hold with the new definition of the iteration 
(1) Claim 2.7. 
(2) Conclusion 2.9. 
(3) Claim 2.10. 

[Why? The same proofs.] 

CLAIM 3.4. It is possible to arrange the bookkeeping, so that IFp.2 41 
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PROOF OF THE CLAIM. It suffices to prove that for every a* < C2, in V"t* we have 

IHQ* "(A' : 8 < co, ) is not a 41-sequence." 

def de Let G be Q,*-generic over VI-*, and let F d U G. Let A f F-I({1}). Suppose 
that IAa " AI < No. We can find p* C G which forces this, in fact without loss of 
generality for some e < 8 we have 

p* IF "Aal 
" 

A C e". 

But consider 
def c 
= { q > p* (]y C (A6 6) n Dom(q))[q(y) = 0] }. 

This set is dense above p*: if r > p* is such that Dom(r) n A' is infinite, then 
r C Jq. Otherwise, let 

y = min(Af a- (Dom(r) U e)) 

def 
and let q = 

r U {(y, 0)}. Contradiction. A 

DEFINITION 3.5. Suppose that 

(a) y < TV, 
(b) N = ( Ni : i < y ) is a continuous increasing sequence of countable elementary 

submodels of (r(x), c <) 
(c) T, Q C No and pCPO2 n No, 
(d) p IF "E C [o1"' and 

(e) N (i + 1) C Ni+1 for i < y. 
We say that e < y is bad for (N, A, p, Q) if e is a limit ordinal, and there is no 
m(E) =m(N[e,p,T) < coand sequences (rm :n < co) and(/n n < co) for 
m ? m(e) such that r m, flnm C NE and 

(1) rem lIp, "fl C T", 

(2) Un Eflnt = NE n01, 
(3) r'm > pforalln,m, 
(4) lnm increase with n, 
(5) for some m < m(e) the set{r : n < co} has an upper bound in Pw2 
(6) m (e) and 

def 
d ((rn n <co) m <m(<)) 

and 

,8 def ((IMn<c :m<me 

are definable in (() V , <) from the isomorphism type of ((N.:: < < 
e ), p, A, Q) (we shall sometimes abbreviate this by saying that these objects 
are defined in a canonical way). 

MAIN CLAIM 3.6. Suppose that N. y, p and T are as in Definition 3.5. Then the set 
def B {e < y :e badfor (N,,p, ) } 

has order type < co@'. 
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PROOF OF THE MAIN CLAIM. Fix such A, y, p and T. We define p = p(y, NTA, p) 
as in Subclaim 2.15 and p*, q*, w*, b as in the proof of Main Claim 2.14. We shall 
show that B C b, by taking any limit ordinal E* C (y + 1) - b and showing that it 
is not in B. 

Given E*, we define n I and ( rn: n < co ) and (/3~ n < co )the way we did in 
the proof of Main Claim 2.14. We let m(E*) = 2' - 1. For m < m(E*), we let 
{ im: n < co } be the increasing enumeration of 

{i<co: i =m (mod2 n)} 

and let r7I = rinn and /" =In. We shall show that for some m < m(E*), the 
sequence ( rug: n < co) has an upper bound in P,,2. Recall the definition of all for 
1 < n* from the proof of Main Claim 2.14. Notice that it is not a priori clear that 
Un<c) rm is a condition, as it may happen that for some 1 < n* it is forced that 

Xl- U Dom(r1) (a,) n A" 
n<co 

is infinite, yet Un<c rm1 (a,) [X, is 0 only finitely often. 
By induction on 1 < n* we choose q* C P,, and ki < 2', so that 

(a) q* > p* pal, 
(b) (Vn < co)[n = k1(mod 21) ,\ rn ral < q]. 

(c) q7 < q7*+. 
This clearly suffices, as we have that qn* C Po, is a common upper bound of 
{rk,* :n <o} 

Let q* q* ao = p* ao. 
Given q7 C PO, and ki < 21 for some 1 < n*. Let 

F {n < co: n =ki (mod 21)}. 

Let k' = k, and k' = ki + 2'. Then IF - F U F2, where IF and F2 are infinite 
disjoint and defined by the following, for j C { 1, 2}. 

def 
d{ n CrF: n = k5 (mod 21+1) }. 

If 

q7 1- U Dom(Nr(af))fn Aal finite" 
nerd 

def 
for at least one j C {1, 2}, let j* be the smallest such j and let kl+ I = k>*. Let 

*def*N) 
q = q { a rnt ())j> } p*r(a/, a,+?). 

Otherwise, we can find some q' C PO, such that q' > q* and 

ql F- U Dom(rn(al)) n A" infinite". 
n C FN 
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def def Let j* 1 and kl+1 = k', and let 

qj~1 I q;{( ail U rn(a/) 
Dom(rU()S)" 

} p*r(ai, ai). 

nGF1 lr 

(Remember that for n, /4 n2, we have that Dom(rnl (a,)) \ 4 and Dom(r,22 (ai)) 
are disjoint.) 

Observe, similarly to Subclaim 2.19, that the choice of F and fi in this proof was 
canonical. - 

CLAIM 3.7. IFkpo 4 

PROOF OF THE CLAIM. Let ( -6 (No: i < ): < co, ) be as in the proof of 
Claim 2.20, as well as N6 for limit ordinal 8 < co1. 

For limit 8 < co, we define n* (8) and ( A...: m < m* (8) ) as follows. 
- ~~~~~~~~~~~~~~~~~~~def 

If flp PNN and rN, p,, N, are well defined, then we let m* () = 
m- . N, N, and 

for m < m*(b) we letAW dAf{,B n < co }. Otherwise, we let m* O and A' be 
the range of any cofinal co-sequence in 8. 

We claim that 

((Am: m < m*()) :< co,) 
exemplifies that VP F 4(w1). 

Suppose that 

p* j 
c E [co,]if and for all 8, m we haveA' \ / 0". 

Let N, C, 8 and F be as in the proof of Claim 2.20. It is easily seen that q,,* obtained 
as in the proof of Main Claim 3.6 exemplifies a contradiction. -1 
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