Homotopical and homological finiteness properties of monoids and their subgroups

Robert Gray

Fact: There are lots of nasty finitely presented monoids out there.

Markov (1947), Post (1947): There exist finitely presented monoids for which there is no algorithm to solve the word problem.

Idea

1. Identify a class C of “nice” finite presentations:
 - finite complete rewriting systems
 - noetherian and confluent

 A monoid defined by a finite complete rewriting system has solvable word problem.

2. Try to gain understanding of those monoids that may be defined by presentations from C:
 - study properties of monoids defined by such rewriting systems:
 - Finite derivation type (FDT)
 - FP_n
Finite derivation type
a homotopical finiteness condition

- Is a property of finitely presented monoids.
- Introduced by Squier (1994)
 - (and independently by Pride (1995))

Original motivation
To capture much of the information of a finite complete rewriting system for a monoid in a property which is independent of the choice of presentation.

- Connections with diagram groups (which are fundamental groups of Squier complexes of monoid presentations)
 - Kilibarda (1997)
 - Guba & Sapir (1997)
The derivation graph of a presentation

- $\mathcal{P} = \langle A \mid R \rangle$ a monoid presentation
 - A - alphabet, $R \subseteq A^* \times A^*$ - rewrite rules
- **Derivation graph:** $\Gamma = \Gamma(\mathcal{P}) = (V, E, \iota, \tau, \iota^{-1})$:
 - **Vertices:** $V = A^*$
 - **Edges are 4-tuples:**
 $\{(u, r, \epsilon, v) : u, v \in A^*, r = (r_{+1}, r_{-1}) \in R, \text{ and } \epsilon \in \{+1, -1\}\}$.
- **Initial and terminal vertices:** $\iota, \tau : E \rightarrow V$ for $E = (u, r, \epsilon, v)$:
 - $\iota E = ur_\epsilon v$, $\tau E = ur_{-\epsilon} v$
- **Inverse edge mapping:** $\iota^{-1} : E \rightarrow E$
 - $(u, r, \epsilon, v)^{-1} = (u, r, -\epsilon, v)$.
Paths and pictures

Example. \(\langle x, y | xy = y, yx^2 = y^3 \rangle \)

A path is a sequence
\(\mathbb{P} = \mathbb{E}_1 \circ \mathbb{E}_2 \circ \ldots \circ \mathbb{E}_n \) where
\(\tau \mathbb{E}_i \equiv \iota \mathbb{E}_{i+1} \).

Gluing edge-pictures together we obtain pictures for paths.

\(\iota \) and \(\tau \) can be defined for paths

In this example
\(\iota \mathbb{P} = yxyxxxx, \ \tau \mathbb{P} = yyxxyy. \)
Operations on pictures

\[\mathcal{P} = \langle A | R \rangle, \quad \Gamma = \Gamma(\mathcal{P}) \]

Pictures \iff Paths

- **Parallel paths:** write \(\mathcal{P} \parallel \mathcal{Q} \) if \(\iota \mathcal{P} \equiv \iota \mathcal{Q} \) and \(\tau \mathcal{P} \equiv \tau \mathcal{Q} \).
- **X** - set of pairs of paths \((\mathcal{P}_1, \mathcal{P}_2)\) such that \(\mathcal{P}_1 \parallel \mathcal{P}_2 \).

Idea

Want to regard certain paths as being equivalent to one another modulo \(X \).
Operations on pictures

Basic operation (I): Deleting a cancelling pair

Basic operation (II): Interchanging disjoint discs
Operations on pictures

Basic operation (III): Replacing a subpicture using X
Replace a subpicture P_1 by P_2 provided $(P_1, P_2) \in X$.

\[u \cdot P_1 \cdot v \xrightarrow{\sim} u \cdot P_2 \cdot v \]
Homotopy bases

Note: Applications of these picture operations do not change the initial vertex or the terminal vertex of the original path.

A homotopy base is...

a set X of parallel paths such that given an arbitrary pair $(P_1, P_2) \in \parallel$ we can transform P_1 into P_2 by a finite sequence of elementary picture operations (and their inverses)

(I) cancelling pairs, (II) disjoint discs, (III) applying X.
Finite derivation type

Definition

$\mathcal{P} = \langle A | R \rangle$ has **finite derivation type (FDT)** if there is a **finite homotopy base** for $\Gamma = \Gamma(\mathcal{P})$. A monoid M has FDT if it may be defined by a presentation with FDT.

Theorem (Squier (1994))

- *The property FDT is independent of choice of finite presentation.*
- *Let M be a finitely presented monoid. If M has a presentation by a finite complete rewriting system then M has FDT.*
Monoids and their subgroups

Idea

Relate the problem of understanding a property for monoids with the problem of understanding the property for groups.

- M - monoid
- Green’s relations \mathcal{R}, \mathcal{L}, and \mathcal{H}

 \[x \mathcal{R} y \iff xM = yM, \quad x \mathcal{L} y \iff Mx = My, \quad \mathcal{H} = \mathcal{R} \cap \mathcal{L}. \]

- H = an \mathcal{H}-class. If H contains an idempotent e then H is a group with identity e.

 ▶ These are precisely the maximal subgroups of M.

General question: How do the properties of M relate to those of the maximal subgroups of M?
Finite derivation type for subgroups of monoids
(joint work with A. Malheiro)

Theorem

Let M be a monoid and let H be a maximal subgroup of M. If the \mathcal{R}-class of H contains only finitely many \mathcal{H}-classes then:

- M has FDT \Rightarrow H has FDT.
- Given a homotopy base X for M we show how to construct a homotopy base Y for H. Finiteness is preserved when the \mathcal{R}-class has only finitely many \mathcal{H}-classes.
- **Ruskuc (1999):** Proved the corresponding result for finite presentability.
A semigroup is regular if every \mathcal{R}-class (equivalently every \mathcal{L}-class) contains an idempotent.

Theorem

Let M be a regular monoid with finitely many left and right ideals. Then M has finite derivation type if and only if every maximal subgroup of M has finite derivation type.

Notes on proof. We show in general how to construct a homotopy base for M from homotopy bases of the maximal subgroups.
Complete rewriting systems

Theorem

Let M be a regular monoid with finitely many left and right ideals. If every maximal subgroup of M has a presentation by a finite complete rewriting system then so does M.

- The converse is still open.
- This relates to the following open problem from group theory:

Question. Is the property of having a finite complete rewriting system preserved when taking finite index subgroups?
The finiteness condition FP_n

- **Wall (1965):** introduced a (geometric) finiteness condition for groups called \mathcal{F}_n:
 - $\mathcal{F}_1 \equiv$ finite generation
 - $\mathcal{F}_2 \equiv$ finite presentability

- **Issue:** \mathcal{F}_n not very tractable in terms of using algebraic machinery
- **Bieri (1976):** introduced FP_n for groups.

Definition

A monoid M is of type **left-FP_n** if there is a resolution:

$$F_n \twoheadrightarrow F_{n-1} \twoheadrightarrow \cdots \twoheadrightarrow F_1 \twoheadrightarrow F_0 \twoheadrightarrow \mathbb{Z} \twoheadrightarrow 0$$

of the trivial left $\mathbb{Z}M$-module \mathbb{Z} such that F_0, F_1, \ldots, F_n are finitely generated free left $\mathbb{Z}M$-modules. A monoid is of type **left-FP_∞** if it is **left-FP_n** for all $n \in \mathbb{N}$.
FP}_n \text{ and FDT

- **Kobayashi (1990):**
 \[M \text{ presented by a finite complete rewriting system} \rightarrow M \text{ is of type left-FP}_\infty \]

 \[\text{FDT} \rightarrow \text{FP}_3. \]

- **Cremanns & Otto (1996):** for finitely presented groups
 \[\text{FDT} \equiv \text{FP}_3. \]

Corollary (of our FDT results)

Let M be a finitely presented regular monoid with finitely many left and right ideals. If every maximal subgroup of M is of type FP}_3 then M is of type left-FP}_3.
A semigroup is **simple** if it has no proper ideals.

Theorem

*Let S be a simple semigroup with finitely many left and right ideals. Then the monoid S^1 is of type left-FP_n if and only if all of its maximal subgroups are of type FP_n.***

(Of course, all the maximal subgroups are isomorphic here.)
FP\textsubscript{n} for monoids with zero

Proposition (Kobayashi (preprint))

If a monoid M has a zero element then M is if type left-FP\textsubscript{∞}

Example

\(G\) - any group, \(M = G^0\) - adjoin a zero \((0g = g0 = 00 = 0)\).

- Maximal subgroups of \(M\) are: \(H_1 = G\), and \(H_0 = \{0\}\).
- Kobayashi \(\Rightarrow M\) is left-FP\textsubscript{∞}.
- \(G\) can have any properties we like
 - e.g. can choose \(G\) not to be of type FP\textsubscript{n} for any given \(n\).
Theorem

Let M be a monoid that has a minimal ideal G which is a group. Then M is of type left-FP_n if and only if G is of type FP_n.

Definition

Clifford monoid - a regular monoid whose idempotents are central

Theorem

A Clifford monoid is of type left-FP_n if and only if it has a minimal ideal G (which is necessarily a group) and G is of type FP_n.
Combining the two results

- For FP_1 we have:

Theorem

Let S be a monoid with a minimal ideal J such that J has finitely many left and right ideals. Let G be a maximal subgroup of J. Then S is of type left-FP_1 if and only if G is of type FP_1.

Corollary

Let S be a monoid with finitely many left and right ideals. Let G be a maximal subgroup of the unique minimal ideal of S. Then S is of type left-FP_1 if and only if G is of type FP_1.

- Currently in the process of extending this to left-FP_n ($n \geq 2$).
- **For the future:** What about monoids without minimal ideals?