Locally-finite connected-homogeneous digraphs

Robert Gray

joint work with R Möller (University of Iceland)

Groups and infinite graphs
Vienna, August 2008
Symmetry properties for graphs

- There are varying amounts of symmetry that a graph can display.
- Roughly speaking, the more symmetry a graph has the larger its automorphism group will be (and vice versa).

Examples

\(\Gamma \) - graph, \(V\Gamma \) - vertex set

- \(\Gamma \) is **vertex-transitive** if \(\text{Aut} \ \Gamma \) acts transitively on \(V\Gamma \).
 - Cayley graphs of groups are vertex transitive.
Symmetry properties for graphs

- There are varying amounts of symmetry that a graph can display.
- Roughly speaking, the more symmetry a graph has the larger its automorphism group will be (and vice versa).

Examples

Γ - graph, V_{Γ} - vertex set

- Γ is **vertex-transitive** if $\text{Aut} \, \Gamma$ acts transitively on V_{Γ}.
 - Cayley graphs of groups are vertex transitive.
- Other stronger conditions have been considered:
 - edge-transitive, arc-transitive, k-arc-transitive ([Tutte (1947)](Tutte1947))
 - distance-transitive ([Biggs and Smith (1971)](Biggs1971))
 - homogeneous, k-homogeneous ([Fraïssé (1953)](Fraisse1953))
- Concepts like this arise naturally in the theory of permutation groups.
Classification problems

- \mathcal{P} - a symmetry property of graphs

Problem

Classify those graphs Γ satisfying property \mathcal{P}.

- Various restrictions can be placed on Γ
 - e.g. we may suppose that Γ is:
 - finite
 - infinite but locally-finite
 - countably infinite
 - arbitrary

- In the infinite locally-finite case the number of ends that the graph has plays an important role.
Ends of a graphs

Definition
The number of ends of a graph is the least upper bound (possibly ∞) of the number of infinite connected components that can be obtained by removing finitely many edges.

- Intuitively the number of ends corresponds to the number of “ways of going to infinity”.

Theorem (Diestel, Jung, Möller (1993))

A connected vertex-transitive graph has either 1, 2 or ∞ many ends.
Examples: A grid, a tree and a line

Grid has 1 end

Tree has ∞ many ends

Line has 2 ends
Cutting up graphs

Definition (Cuts)

A set $c \subseteq V\Gamma$ of vertices is called a cut if c and its complement c^* are both infinite and

$$\delta c = \{e \in E\Gamma : \text{one vertex of } e \text{ lies in } c \text{ and one in } c^*\}$$

is finite.

Theorem (Dunwoody (1982))

Any infinite connected graph with more than one end has a cut $d \subseteq V\Gamma$ such that for all $g \in \text{Aut}\Gamma$ at least one of the following holds

$$d \subseteq gd, \quad d \subseteq gd^*, \quad d^* \subseteq gd, \quad \text{or} \quad d^* \subseteq gd^*.$$
Applications of Dunwoody’s theorem

- Dunwoody’s theorem has been usefully applied in the study of locally-finite graphs satisfying symmetry conditions.

Examples

- **Macpherson (1982)** - classification of infinite locally-finite distance-transitive graphs
Applications of Dunwoody’s theorem

- Dunwoody’s theorem has been usefully applied in the study of locally-finite graphs satisfying symmetry conditions.

Examples

- **Macpherson (1982)** - classification of infinite locally-finite distance-transitive graphs

Let Γ be a locally finite connected graph with more than one end.

- **Möller (1992)** - If Γ is 2-distance transitive then Γ is k-distance transitive for all $k \in \mathbb{N}$.

- **Thomassen–Woess (1993)** - If Γ is 2-arc transitive then Γ is a regular tree.

- **Thomassen–Woess (1993)** - If Γ is 1-arc transitive and all vertices have degree r, where r is a prime, then Γ is a regular tree.
Digraphs with symmetry

D - a digraph, $ED \subseteq VD \times VD$ - set of arcs of D
(no loops or two-directional arcs \leftrightarrow)

Definition

Number of ends of $D :=$ the number of ends of the underlying undirected graph of D.

- **Seifter (2007)** - investigated the structure of infinite locally-finite transitive digraphs with > 1 end
 - They are far less “sensitive” to symmetry conditions than undirected graphs.
 - Even with a seemingly very strong condition called high-arc-transitivity they can have very rich structure.
Definition
A digraph D is called connected-homogeneous if any isomorphism between finite connected induced subdigraphs of D extends to an automorphism.

Example. $D =$ infinite directed line (i.e. \mathbb{Z} with arcs $i \rightarrow i + 1$)
Connected-homogeneity

Definition

A digraph \(D \) is called **connected-homogeneous** if any isomorphism between finite connected induced subdigraphs of \(D \) extends to an automorphism.

Example. \(D = \) infinite directed line (i.e. \(\mathbb{Z} \) with arcs \(i \rightarrow i + 1 \))

Problem. Classify the countable connected-homogeneous digraphs.

A solution to this problem would complete the following table:

<table>
<thead>
<tr>
<th></th>
<th>Homogeneous</th>
<th>Connected-homogeneous</th>
</tr>
</thead>
</table>

Subproblem. Classify the connected-homogeneous digraphs that are **locally-finite** and have **more than one end**.
The case that a triangle embeds

Theorem (RG & Möller (2008))

Let D be a connected locally-finite digraph with more than one end, and suppose that D embeds a triangle. Then D is connected-homogeneous if and only if it is isomorphic to a digraph built from directed triangles in the following way:
Highly arc-transitive digraphs

Definition

A k-arc in D is a sequence (x_0, \ldots, x_k) of vertices with $x_i \rightarrow x_{i+1}$ (and $x_{i-1} \neq x_{i+1}$).

A digraph D is **highly-arc-transitive** if $\text{Aut } D$ is transitive on the set of k-arcs of D for every natural number k.

- **Cameron, Praeger, and Wormald (1993)** - carried out an extensive study of the class of highly-arc-transitive digraphs.

Proposition (RG & Möller (2008))

Let D be a triangle-free locally-finite digraph with more than one end. If D is connected-homogeneous then D is highly-arc-transitive.
Triangle-free connected-homogeneous digraphs

Directed regular trees
Triangle-free connected-homogeneous digraphs

Directed regular trees
Triangle-free connected-homogeneous digraphs

Other tree-like examples exist.

Constructed by gluing together certain bipartite graphs.
Definition

The set of descendants $\text{desc}(u)$ of a vertex u is the set of all vertices v such that there is a directed path from u to v.

In this example $\text{desc}(u)$ is a tree for every vertex u.

Triangle-free connected-homogeneous digraphs
Definition

The reachability digraph $\Delta(D)$ of D is the subdigraph induced by the set of all arcs reachable by an alternating walk beginning from an arc.

In this example $\Delta(D)$ is bipartite and is isomorphic to a 6-cycle.
Triangle-free case

- For arbitrary locally finite highly-arc-transitive digraphs
 - desc(u) need not be a tree
 - it is an open question as to whether $\Delta(D)$ is bipartite

Theorem (RG & Möller (2008))

Let D be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- desc(u) is a tree for all $u \in VD$
- $\Delta(D)$ is a bipartite graph
Triangle-free case

- For arbitrary locally finite highly-arc-transitive digraphs
 - desc(u) need not be a tree
 - it is an open question as to whether $\Delta(D)$ is bipartite

Theorem (RG & Möller (2008))

Let D be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- desc(u) is a tree for all $u \in VD$
- $\Delta(D)$ is a bipartite graph
- Specifically, $\Delta(D)$ is isomorphic to one of:
 - infinite semiregular tree $T_{a,b}$ ($a, b \in \mathbb{N}$)
 - cycle C_{2m} ($m \geq 4$)
 - complete bipartite graph $K_{m,n}$ ($m, n \in \mathbb{N}$ with $m \geq 2$ or $n \geq 2$)
 - complement of a perfect matching CP_n for some $n \geq 3$ (i.e. the complete bipartite graph $K_{n,n}$ with a matching removed)

- **Proof.** Uses Dunwoody’s theorem, structure trees, and results from Seifter (2007).
Triangle-free case

- For arbitrary locally finite highly-arc-transitive digraphs
 - desc(u) need not be a tree
 - it is an open question as to whether \(\Delta(D) \) is bipartite

Theorem (RG & Möller (2008))

Let \(D \) be a triangle-free locally-finite connected-homogeneous digraph with infinitely many ends. Then

- desc(u) is a tree for all \(u \in VD \)
- \(\Delta(D) \) is a bipartite graph
- Specifically, \(\Delta(D) \) is isomorphic to one of:
 - infinite semiregular tree \(T_{a,b} \) (\(a, b \in \mathbb{N} \))
 - cycle \(C_{2m} \) (\(m \geq 4 \))
 - complete bipartite graph \(K_{m,n} \) (\(m, n \in \mathbb{N} \) with \(m \geq 2 \) or \(n \geq 2 \))
 - complement of a perfect matching \(CP_n \) for some \(n \geq 3 \) (i.e. the complete bipartite graph \(K_{n,n} \) with a matching removed)

- But do all of these potential reachability graphs actually arise in examples?
CPW’s universal covering construction.

Let Δ be one of the following:

<table>
<thead>
<tr>
<th>semiregular tree</th>
<th>complete bipartite</th>
</tr>
</thead>
<tbody>
<tr>
<td>complement of perfect matching</td>
<td>cycle</td>
</tr>
</tbody>
</table>

Then there exists a connected-homogeneous digraph $DL(\Delta)$ with reachability graph Δ.

$DL(\Delta)$ is constructed by gluing together copies of Δ in such a way that

- any two copies of Δ intersect in at most one vertex
- the only cycles in D are those that occur in the copies of Δ

This construction was introduced by Cameron, Praeger, and Wormald (1993) during their study of highly-arc-transitive digraphs.
The digraph $DL(\Delta)$ where $\Delta = C_6$ is a 6-cycle.
Triangle-free case

- And “most” examples actually arise in this way.

Theorem (RG & Möller (2008))

Let D be a connected triangle-free locally-finite connected-homogeneous digraph with infinitely many ends, and with $\Delta(D)$ not isomorphic to $K_{2,2}$ or to the complement of a perfect matching.

Then $D \cong DL(\Delta)$, the digraph obtained from the above CPW universal covering construction.

In particular, in these cases D is uniquely determined by its reachability digraph $\Delta(D)$.

- This just leaves the cases that Δ is isomorphic to $K_{2,2}$ or to the complement of a perfect matching.
$\Delta \cong \text{complement of perfect matching}$

- Malnič, Marušič, Seifter, and Zgrablić (2002)
 - introduced a new family of highly-arc-transitive digraphs
 - answered an open question about homomorphisms onto Z

- The original construction involved gluing together cycles $C_{2m}(m \geq 3)$.

An MMSZ digraph D with $\Delta(D) \cong CP_3$ complement of perfect matching.
\(\Delta \cong \text{complement of perfect matching} \)

- Malnič, Marušič, Seifter, and Zgrablić (2002)
 - introduced a new family of highly-arc-transitive digraphs
 - answered an open question about homomorphisms onto \(\mathbb{Z} \)

- The original construction involved gluing together cycles \(C_{2m}(m \geq 3) \).

An MMSZ digraph \(D \) with \(\Delta(D) \cong CP_3 \) complement of perfect matching.
\(\Delta \cong \text{complement of perfect matching} \)

- Malnič, Marušič, Seifter, and Zgrablić (2002)
 - introduced a new family of highly-arc-transitive digraphs
 - answered an open question about homomorphisms onto \(\mathbb{Z} \)

- The original construction involved gluing together cycles \(C_{2m}(m \geq 3) \).

An MMSZ digraph \(D \) with \(\Delta(D) \cong CP_3 \) complement of perfect matching.
\[\Delta \cong \text{complement of perfect matching} \]

 - introduced a new family of highly-arc-transitive digraphs
 - answered an open question about homomorphisms onto \(\mathbb{Z} \)

- Carrying out their construction with any complement of perfect matching \(CP_m(m \geq 3) \) gives a connected-homogeneous digraph.

An MMSZ digraph \(D \) with \(\Delta(D) \cong CP_3 \) complement of perfect matching.
Malnič, Marušić, Seifter, and Zgrablić (2002) introduced a new family of highly-arc-transitive digraphs and answered an open question about homomorphisms onto \mathbb{Z}.

Carrying out their construction with any complement of perfect matching $CP_m (m \geq 3)$ gives a connected-homogeneous digraph.

A generalisation of their construction gives further examples.
Theorem (RG & Möller (2008))

Let D be a connected triangle-free locally-finite connected-homogeneous digraph with more than one end.

If $\Delta(D)$ is isomorphic to the complement of a perfect matching then either

(i) D is obtained from the CPW construction or

(ii) D is a generalised MMSZ digraph

In particular, for any complement of perfect matching Δ there are infinitely many non-isomorphic D with $\Delta(D) \cong \Delta$.
\[\Delta \cong K_{2,2} - \text{the problem case} \]

\[D - \text{connected triangle-free locally-finite connected-homogeneous digraph with more than one end.} \]

Suppose \(\Delta(D) \cong K_{2,2} \)

- Known examples
 - CPW example, and
 - generalised MMSZ examples
- But there are other examples in addition to these (too complicated to go into here :-().
- This is the only case where the infinitely-ended classification is still incomplete.
Concluding remarks

- We have results for the 2-ended case, e.g. $\Delta(D) \cong K_{n,n}$.

Still to do

- Complete the classification by determining all examples whose reachability graph is $K_{2,2}$.

And then

- Extend the result to:
 - non-locally finite digraphs
 - one-ended digraphs

- Generalise results to locally-finite highly-arc-transitive digraphs with more than one end.
 - In particular prove that for such digraphs $\Delta(D)$ is always bipartite.