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The stability of a Plateau border between three soap films is considered, taking into account the effects

of line tension and bending stiffness in the border. A simple geometry is considered, in which the border

initially lies in equilibrium along the axis of a circular cylinder, with three equally-spaced films radiating

outwards to meet the inside wall of the cylinder. The films are pinned at the two ends of the cylinder

with a fixed relative twist, so the initial film surfaces are helicoids. The stability of this system to small

perturbations, involving both the films and the border, is investigated as a function of the cylinder aspect

ratio, twist angle, film surface tension, border line tension, and border bending stiffness. Analytically,

the stability problem is reduced to finding the first occurrence of a zero eigenvalue of an infinite matrix,

which is then estimated numerically. The results from this calculation are in good agreement with full

numerical simulations.
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1. Introduction

Aqueous foams have been widely used in both domestic and industrial applications for many years,

particularly due to their high interfacial area, surface activity, and yield stress. Recently, renewed interest

in foams, particularly their stability, has been driven by architecture (e.g. ARUP Beijing Water Cube,

which also highlights their visual attractivenes; Carfrae, 2006) and their use as well-defined proxies

for more complicated systems such as biological tissues (Hayashi & Carthew, 2004; Ishihara et al.,

2013), following the pioneering ideas of D’Arcy Wentworth Thompson (1961). Foam structure is largely

determined by the minimisation of surface energy, of which the dominant term is the surface area of the

thin films, particularly in what is known as the dry limit of vanishing liquid content.

At finite liquid content, the films meet in threes along liquid-filled channels, known as Plateau

borders, which have a scalloped triangular cross-section. Questions concerning the contribution of the

mechanics of the Plateau borders to the foam energy remain largely unresolved. Consideration of a

single border surrounded by its three soap films is therefore an appropriate initial geometry in which to

formulate and solve mesoscopic models of foam stability.

Various authors (such as Kern & Weaire, 2003; Géminard et al., 2004; Fortes & Teixeira, 2005;

Besson & Debrégeas, 2007) have reported theoretical and experimental evidence for a negative line

tension along the Plateau borders of relatively dry foams. However, it is also noted that a border subject

c© The author 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 29 R.J. WHITTAKER & S.J. COX

(a)

θ

R

H

x∗

y∗

z∗

(b)

R

x∗

y∗

z∗

θ

H

FIG. 1. The setup used in Whittaker & Cox (2015), with N vanes inside a right circular cylinder, bounded by between equally

spaced radii at the ends, the curved interior surface, and a central border. (a) N = 2 and (b) N = 3.

only to a negative tension will always be unstable to small perturbations of sufficiently large axial

wavenumber k. This is because deformations of a border under negative tension with amplitude ε and

wavenumber k will lead to an O(ε2k2) energy gain from increasing the border length, whereas the energy

cost from increasing the area of the adjacent surfaces is only O(ε2k) since the surface perturbation is

confined to an O(k−1) distance away from the border.

So, in order to obtain a well-posed problem, as well as a negative line tension in the border, an

additional effect is needed to stabilise the border at larger wavenumbers. The mathematically convenient

and physically reasonable thing to do is to also introduce a (positive) bending stiffness to the border, with

an associated energy cost of O(ε2k4). At smaller wavenumbers k, the negative tension will dominate,

leading to a destabilising effect. At larger wavenumbers, the bending stiffness will dominate, leading to

a net stabilising effect.

For this initial study, we adopt the simplest well-posed border-mechanics model in a simple model

system. The precise details of the border mechanics are likely to be important, not just for quantita-

tive determination of the stability boundary, but also when analysing foam configurations with curved

Plateau borders, so deserves further attention. (The latter can be caused by pressure differences between

cells and/or the sagging of borders under their own weight. See, for example, Weaire et al., 2004;

Embley & Grassia, 2007.)

In this paper we shall consider theoretically the effects of border tension and bending stiffness on

the stability of a single Plateau border in a simple model system. Previously, Cox & Jones (2014) and

Whittaker & Cox (2015) considered the stability of an ideal (zero-volume) Plateau border occupying the

centre-line of a circular cylinder of radius R, with equally spaced films radiating out to the cylinder wall,

as shown in figure 1(b). The ends of the film were pinned to fixed equally spaced radii, while the sides

were free to move on the internal curved wall of the cylinder. Different geometries were considered by

varying the length L of the cylinder and the relative twist θ between the radii at the two ends.

The films and border were assumed to have zero thickness. The mechanics of the system was then

governed by a uniform surface tension in the films, with the border being taken as entirely passive.

In all geometries, there is an equilibrium configuration in which each of the films occupies part of a

helicoid whose axis lies along the centre-line of the cylinder. This configuration was found to be stable

in shorter and less twisted geometries, and unstable in longer and more twisted geometries. The stability

boundary was computed as a critical twist angle θc as a function of the aspect ratio ℓ= L/R. For a given

ℓ, the surface is stable for θ < θc and unstable for θ > θc. The instabilities manifested themselves by
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the Plateau border moving off the centre-line and one or more of the films re-connecting on the curved

surface of the cylinder.

Here, we shall consider the same problem as in Whittaker & Cox (2015), but include the effects

of both a line tension and bending stiffness in the Plateau border. Kern & Weaire (2003) showed that

a liquid-filled Plateau border is well-approximated by an idealised Plateau border with negative line

tension, which depends on the liquid volume; we extend that idea here. Our aim is to determine the

stability of a twisted Plateau border inside a circular cylinder, in terms of the twist, cylinder aspect ratio,

and the new border mechanics. We employ the same method as Whittaker & Cox (2015) of looking for

a “minimal-energy O(ε) perturbation that results in zero net energy change at O(ε2)” in order to find

the stability boundary.

2. Setup

We adopt the same setup as in Whittaker & Cox (2015), with N > 2 equally spaced radial films inside

a circular cylinder of length L and radius R, as shown in figure 1. The relevant case for Plateau borders

in foams is N = 3. However, the other cases N = 2 and N > 4 may be relevant in artificial situations,

where, for example, one might wish to construct a frame and membrane structure that is energetically

stable. The case N > 4 turns out to be equivalent to N = 3, and so we use a general development below

to cover N > 3. The case N = 2 is slightly different, and is dealt with in Appendix D.

2.1 Geometry and mechanics

The radii of each film are pinned at the ends of the cylinder, but the contact lines of the films on the

interior wall are free to move. The pinned radii are equally spaced at each end, but a fixed twist of angle

θ is imposed between the two ends. The vanes are labelled by j ∈ {0,1, . . .N − 1}. The angular offset

of the jth vane relative to the 0th vane at the pinned ends is then θ j = 2π j/N.

Spatial positions are described using Cartesian coordinates (x∗,y∗,z∗). The origin is taken at the

centre of one end of the cylinder, the z∗ direction corresponds to the axis of the cylinder, and the x∗

direction corresponds to the direction of the 0th vane at z∗ = 0.

The vanes are all subject to a uniform surface tension (energy per unit area) γ . The Plateau border

is subject to a line tension (energy per unit length) τ , and a bending stiffness (coefficient of energy due

to curvature) β . To ensure we have a well-posed and physically meaningful problem, we must have

stability at large wave-numbers. This requires that we have γ > 0 and either β > 0 or β = 0 and τ > 0.

(If β > 0 then τ can be negative.)

Lengths are non-dimensionalised on the cylinder radius R. We therefore work with dimensionless

Cartesian coordinates (x,y,z) = (x∗,y∗,z∗)/R. We define the aspect ratio ℓ = L/R, which is thus the

dimensionless length of the cylinder. We also introduce the twist parameter k = θ/ℓ. Finally, we

define two dimensionless parameters that give the relative importances of the two energies in the border

compared with the energy in the surrounding vanes:

T =
2τ

γRN
, B =

2β

γR3N
. (2.1)

(The factor of N/2 in these definitions reflects the fact that a perturbation of the border will result in a

average resistance equivalent to stretching N/2 vanes.)

As in Whittaker & Cox (2015) we still have an initial equilibrium state in which the border lies along

the axis of the cylinder, and the films are sections of helicoids.
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2.2 Perturbation description

We must introduce notation to describe the perturbation to both the surfaces of the vanes, and the line

of the central border. So that we can work with O(1) perturbation functions, we introduce a small fixed

parameter ε ≪ 1, chosen so that the typical dimensionless displacements are O(ε).
Following Whittaker & Cox (2015), the unperturbed vane surface is parameterised by two dimen-

sionless coordinates: ξ measuring radial distance from the cylinder axis, and η measuring distance

from one end of the cylinder. The perturbation of the jth vane is described by the dimensionless normal

displacement εζ ( j)(ξ ,η) of the point originally parameterised by (ξ ,η). The perturbed surface of the

jth vane is therefore given by

x( j)(ξ ,η) =





ξ cos(θ j + kη)
ξ sin(θ j + kη)

η



+
ε ζ ( j)(ξ ,η)

(1+ k2ξ 2)1/2





−sin(θ j + kη)
cos(θ j + kη)

−kξ



 , (2.2)

for

ξ ∈
(

ξ
( j)
0 (η),ξ

( j)
+ (η)

)

and η ∈ (0, ℓ) . (2.3)

Each vane is pinned to the radii at the cylinder ends at η = 0, ℓ; meets the central border at ξ = ξ
( j)
0 (η);

and meets the curved cylinder wall at ξ = ξ
( j)
+ (η). With no perturbations to the undeformed equilibrium

configuration, we would have ζ ( j)(ξ ,η) = 0, together with ξ
( j)
0 (η) = 0 and ξ

( j)
+ (η) = 1.

The perturbation to the central border is described using two functions q(z) and h(z), which give the

border’s displacement at each dimensionless axial position z. The displacement is measured in the plane

perpendicular to the cylinder’s axis, with (dimensionless) components (εq(z),εh(z)), taken to be in the

directions parallel and perpendicular to the equilibrium position of the 0th vane at that axial position z.

The location r of the perturbed border is therefore given by

r(z) =





0

0

z



+ εq(z)





cos(kz)
sin(kz)

0



+ εh(z)





−sin(kz)
cos(kz)

0



 , (2.4)

for z ∈ (0, ℓ).
Finally, it is also convenient to introduce notation for the perturbation to the angle at which each

vane meets the Plateau border. We define εφ ( j)(z) as the change in the angle of the jth vane (from its

equilibrium position) in the plane perpendicular to the cylinder axis at axial position z.

Observe that there is redundancy in this representation with ζ ( j)(ξ ,η), q(z), h(z) and φ ( j)(z), as

the vane displacements at the Plateau border must be compatible (kinematically and dynamically) with

each other and with the displacements and rotation of the Plateau border.

2.3 Azimuthal expansions in θ j

In order to relate the border displacements (q,h) to the displacement ζ j of the jth vane, it is convenient

to express the displacement of the border at each axial position in terms of its components (q( j),h( j))
parallel and perpendicular to the original orientation of the jth vane at that position. Using simple

geometry, we obtain

q( j)(z) = q(z) cosθ j + h(z) sinθ j , (2.5)

h( j)(z) = −q(z) sinθ j + h(z) cosθ j . (2.6)
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It is also convenient to decompose the rotation angle for each vane using Fourier-like series in terms

of the angular offset θ j of each vane:

φ ( j)(z) = φ̄(z)+ c(z) cosθ j + s(z) sinθ j + . . . . (2.7)

For N = 3, the expression above is exact. For N > 4, trigonometric functions with arguments of 2θ j and

higher will also be needed. (For N = 2, see Appendix D.)

To compute the coefficients (φ̄ ,c,s) in terms of φ ( j), we multiply the expansion (2.7) by either unity,

cosθ j or sinθ j and then sum over j. The orthogonality of the trigonometric functions means that only

one term on the right-hand side survives. Using the results from Appendix F of Whittaker & Cox (2015)

for the sums of trigonometric functions and their products, we find that (for N > 3):

φ̄(z) =
1

N

N−1

∑
j=0

φ ( j)(z) , (2.8)

c(z) =
2

N

N−1

∑
j=0

φ ( j)(z)cosθ j , (2.9)

s(z) =
2

N

N−1

∑
j=0

φ ( j)(z)sin θ j . (2.10)

2.4 Summary

The displacement of the jth vane is described by

ζ ( j)(ξ ,η) for 0 < η < 1 and ξ
( j)
0 (η)< ξ < ξ

( j)
+ (η) . (2.11)

The transverse displacement of the border and the rotations of the vanes there are described by
(

h(z),q(z)
)

and
(

φ̄ (z),s(z),c(z)
)

for 0 < z < 1 . (2.12)

These border functions are related to the vane-specific functions h( j)(z), q( j)(z) and φ j(z) by (2.5)–(2.7).

The perturbation and domain functions in (2.11) and (2.12) are related and constrained by displace-

ment boundary and matching conditions at the border, on the curved cylinder wall and at the cylinder

ends. When considering the dynamics of perturbations, equilibrium conditions also apply at the border,

at the other boundaries of the vanes, and at each point of the vane surfaces. These conditions will be

derived in the following two sections.

3. Displacement boundary and matching conditions

3.1 Displacement conditions at the border

The displacement (q,h) of the border and the rotation φ ( j) of the vanes at the border affect the domain

of ξ for each vane and yield boundary conditions on ζ . These conditions were derived by Whittaker &

Cox (2015) as:

ξ
( j)
0 = εq( j)(η)+O(ε3) , (3.1)

ζ ( j)(0,η) = h( j)(η)+O(ε) , (3.2)

∂ζ ( j)

∂ξ
(0,η) = φ ( j)(η)+O(ε) . (3.3)
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FIG. 2. The geometry of the film near the Plateau border. (a) The central region at axial position z with N = 3 vanes. The Plateau

border is originally at x = y = 0 with the the vanes shown by thick dashed lines. It is then displaced by ε(q(0),h(0)) and the vanes

each rotated by an additional angle εφ . The vanes in this displaced and rotated configuration are shown by thick solid lines. (b)

The coordinates for describing the perturbation to the jth vane of the film, between the displaced Plateau border at ξ = ξ
( j)
0 (η)

and the cylinder wall at ξ = ξ
( j)
+ (η).

As expected, the parallel displacement q( j) of the border is associated with an expansion or contraction

of the domain in ξ , while the perpendicular displacement h( j) and the rotation φ ( j) set the boundary

conditions on the film’s normal displacement and displacement gradient at the border. See figure 2.

(Note that the boundary conditions at the border at ξ = ξ
( j)
0 have been linearised back to ξ = 0, within

the errors stated in (3.2) and (3.3).)

3.2 Displacement conditions at the curved cylinder wall

The domain boundary for ξ at the wall is set by the displacement of the vane there. The jth vane meets

the circular wall x2 + y2 = 1 at ξ = ξ
( j)
+ (η). Thus we have

[

ξ
( j)
+ (η)

]2

+
[

ζ ( j)(ξ
( j)
+ ,η)

]2

= 1 . (3.4)

This implies

ξ
( j)
+ =



1−
ε2ζ

( j)
+

2

2(1+ k2)



+O(ε4) , (3.5)

where ζ
( j)
+ = ζ ( j)(1,η) is the perturbation at the wall, linearised back to ξ = 1. See figure 2.

3.3 Displacement conditions at the cylinder ends

At the two ends of the cylinder, the vanes are pinned to equally spaced radii, with an overall twist θ
between the two ends. The vanes therefore cannot move from their original positions there, and so we

have

ζ ( j)(ξ ,η) = 0 at η = 0, ℓ . (3.6)

Similarly, the central border cannot move from its original position at the ends and the vanes cannot

rotate there, and so we must have

q(z) = h(z) = φ̄ (z) = s(z) = c(z) = 0 at z = 0, ℓ . (3.7)
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4. Equilibrium conditions and neutral perturbation

For a perturbed configuration to have minimal energy it must be in equilibrium, or else there would be

a nearby configuration with a lower total energy. Therefore, the area of the vanes must be extremal with

regard to further internal perturbations, and also the overall energy must be extremal with respect to any

further motion of the Plateau border and the contact lines with the cylinder walls. We shall now impose

each of these conditions.

4.1 Vane area and cylinder wall contact line

Requiring that the surface of each vane is in equilibrium yields the same Euler–Lagrange equation as

derived by Whittaker & Cox (2015):

(1+ k2ξ 2)
∂ 2ζ ( j)

∂ξ 2
+

∂ 2ζ ( j)

∂η2
+ k2ξ

∂ζ ( j)

∂ξ
+

2k2ζ ( j)

1+ k2ξ 2
= 0 . (4.1)

Equilibrium of the contact line with the wall yields the condition that each vane meets the wall

normally. For a circular wall, Whittaker & Cox (2015) obtained the condition

∂ζ ( j)

∂ξ
−

ζ ( j)

1+ k2
= 0 at ξ = 1 . (4.2)

4.2 Transverse force equilibrium on the border

In Whittaker & Cox (2015), the only forces on the displaced border were the surface-tension forces from

the N attached vanes. Since the vanes each exert the same force γ per unit length of border, equilibrium

of the border meant that the angles between the vanes remained the same, i.e. φ ( j)(z) was independent

of j. But here the perturbed border also generates forces internally from its line tension and bending

stiffness. Therefore imposing equilibrium will mean different vanes must rotate by different amounts to

achieve the right net surface-tension-force to balance the border’s internal forces.

The equilibrium condition that balances the forces from the surface tension in the vanes with the

forces from the line tension and curvature in the border at r(z) can be expressed as

N−1

∑
j=0

f
( j)
γ + fτ + fβ = 0 , (4.3)

where the non-dimensional forces-per-unit-length-of-border are: f
( j)
γ from surface tension in the jth

vane, fτ from the line tension in the border, and fβ from the bending stiffness of the border; all non-

dimensionalised using the scale 1
2
Nγ .

From the angles of the vanes and the border, the surface-tension force from the jth vane is

f
( j)
γ =

(

2

γN

)

γ





cos(θ j + kz+ εφ ( j))+O(ε2)

sin(θ j + kz+ εφ ( j))+O(ε2)
−εψ cos(ϕ −θ j)+O(ε2)



 , (4.4)

where εψ(z) is the angle between the border tangent dr/ds and the cylinder axis, and ϕ(z) is the angle

of dr/ds projected on to the x–y plane relative to the original angle kz of the 0th vane. The components

of (4.4) in the x and y directions can be deduced from figure 2(a), given that the border remains almost
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aligned with the cylinder axis. The O(ε) component of (4.4) in the axial direction is the leading term

from a rotation of the border through an angle εψ(z) with an orientation ϕ − θ j − εφ ( j) relative to the

jth vane.

We expand the trigonometric functions in (4.4) both for small ε and using the multiple angle formu-

lae:

cos(θ j + kz+ εφ ( j)) =
[

cos(θ j)cos(kz)− sin(θ j)sin(kz)
]

− ε
[

cos(θ j)sin(kz)+ sin(θ j)cos(kz)
]

φ ( j)+O(ε2) , (4.5)

sin(θ j + kz+ εφ ( j)) =
[

sin(θ j)cos(kz)+ cos(θ j)sin(kz)
]

+ ε
[

cos(θ j)cos(kz)− sin(θ j)sin(kz)
]

φ ( j)+O(ε2) , (4.6)

cos(ϕ −θ j) = cos(ϕ)cos(θ j)+ sin(ϕ)sin(θ j) . (4.7)

When summed over j, the terms in these expansions either evaluate to zero (sinθ j and cosθ j)
1 or can

be replaced by c(z) or s(z) using (2.9) or (2.10) (sinθ j φ ( j) and cosθ j φ ( j)). We then obtain

N−1

∑
j=0

f
( j)
γ = εc(z)b̂(z)− εs(z)n̂(z)+O(ε2) , (4.8)

where

b̂(z) =





−sin(kz)
cos(kz)

0



 and n̂(z) =





cos(kz)
sin(kz)

0



 . (4.9)

From the standard linear approximations to the line tension and bending forces in a beam (see, e.g.

Howell et al., 2009, §4.4), we model the bending and tension forces in the border as

fτ =

(

2

Nγ

)

τ
d2r∗

ds∗2
= T

d2r

ds2
, (4.10)

fβ = −

(

2

Nγ

)

β
d4r∗

ds∗4
=−B

d4r

ds4
, (4.11)

where r∗ = Rr is the dimensional position of the border, and s∗ = Rs is the dimensional arc length along

it. The dimensionless arc-length s is related to the dimensionless axial coordinate z by

ds =

∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

dz . (4.12)

From (2.4) we find
∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

2

= 1+ ε2

[

(

h′(z)+ kq(z)
)2

+
(

q′(z)− kh(z)
)2

]

, (4.13)

and hence
d

ds
=

d

dz
+O(ε2) (4.14)

1With θ j = 2π j/N, it can be shown that ∑N−1
j=0 sinθ j = ∑N−1

j=0 cosθ j = 0. A proof can be found in Appendix F of Whittaker &

Cox (2015).
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Differentiating the expression (2.4) for r with respect to z, and substituting it in to (4.10) and (4.11)

using (4.14), we find

fτ = εT

(

q′′− 2kh′− k2q

)

n̂+ εT

(

h′′+ 2kq′− k2h

)

b̂+O(ε2) (4.15)

fβ = −εB
(

q′′′′− 4kh′′′− 6k2q′′+ 4k3h′+ k4q
)

n̂

− εB
(

h′′′′+ 4kq′′′− 6k2h′′− 4k3q′+ k4h
)

b̂+O(ε2) . (4.16)

Substituting the expressions (4.8), (4.15) and (4.16) into the equilibrium equation (4.3), and taking

the two components in the directions b̂ and n̂ at O(ε), we have

c(z) = B

(

h′′′′(z)+ 4k q′′′(z)− 6k2 h′′(z)− 4k3 q′(z)+ k4 h(z)
)

+T
(

−h′′(z)− 2kq′(z)+ k2h(z)
)

, (4.17)

s(z) = B
(

−q′′′′(z)+ 4k h′′′(z)+ 6k2 q′′(z)− 4k3 h′(z)− k4 q(z)
)

+T
(

q′′(z)− 2k h′(z)− k2 q(z)
)

. (4.18)

These equations express the condition of transverse force equilibrium on the border at axial position z.

4.3 Equilibrium of border attachment points at z = 0, ℓ

Since we are including a bending stiffness in the border, another boundary condition is needed at z = 0, ℓ
in addition to (3.7). We assume that the attachment points of the border at the tube ends cannot support

any torques. Thus for the border to be in equilibrium at the ends, we require there to be zero torque in

the border there. In the simple bending model, this corresponds to zero curvature of the border at the

ends, i.e. d2r/ds2 = 0. Using (2.4) and (4.14), this condition becomes

h′′+ 2kq′− k2h = 0

q′′− 2kh′− k2q = 0

}

at z = 0, ℓ , (4.19)

correct to O(ε2).

4.4 Equivalence to zero second-order energy variation

It is shown in appendix B that the displacement and equilibrium conditions (3.1)–(3.7), (4.1), (4.2), and

(4.17)–(4.19), when taken together, imply that the overall O(ε2) energy change under the perturbation is

zero. This means that these conditions are sufficient to determine the critical perturbation on the stability

boundary.

(Since the original configuration is in equilibrium, the energy change under any perturbation is at

most O(ε2). If there is a minimal-energy perturbation that results in an O(ε2) decrease in energy,

then the initial configuration is unstable to that perturbation. If all minimal-energy perturbations result

in O(ε2) increases in energy, then the initial configuration is stable. The stability boundary therefore

coincides with a change in sign of the O(ε2) energy change of a critical mode.)
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5. Axial Fourier decomposition

We now have a system comprising a PDE (4.1) for ζ ( j)(ξ ,η) in 0 < ξ < 1, 0 < η < 1 for each j.

Linearised homogeneous boundary conditions are provided by (3.2), (3.3), (3.6), (4.2), involving the

additional functions h( j)(z), q( j)(z), φ ( j), h(z), q(z), c(z), s(z). These additional functions also have

their own coupling equations (2.5)–(2.10), (4.17) and (4.18); and boundary conditions (3.7) and (4.19).

Following Whittaker & Cox (2015), we decompose the system into axial Fourier components, using

half-wave sine series. The vane perturbations are expressed as

ζ ( j)(ξ ,η) =
∞

∑
n=1

X
( j)
n (ξ ) sin

(nπη

ℓ

)

, (5.1)

where Xn(ξ ) captures the radial dependence of the nth axial Fourier mode.

The additional functions (corresponding to border displacements and rotations) are written as:

q( j)(η) =
∞

∑
n=1

q
( j)
n sin

(nπη

ℓ

)

, h( j)(η) =
∞

∑
n=1

h
( j)
n sin

(nπη

ℓ

)

, (5.2)

q(η) =
∞

∑
n=1

qn sin
(nπη

ℓ

)

, h(η) =
∞

∑
n=1

hn sin
(nπη

ℓ

)

, (5.3)

φ ( j)(η) =
∞

∑
n=1

φ
( j)
n sin

(nπη

ℓ

)

, φ̄(η) =
∞

∑
n=1

φ̄n sin
(nπη

ℓ

)

, (5.4)

c(η) =
∞

∑
n=1

cn sin
(nπη

ℓ

)

, s(η) =
∞

∑
n=1

sn sin
(nπη

ℓ

)

. (5.5)

The functions being decomposed here all vanish at η = 0, ℓ by virtue of (3.6) and (3.7), and so are

extended to odd periodic functions on (0,2ℓ). In the extended functions, the function and its first axial

derivative will be continuous everywhere, but we expect discontinuities in the second axial derivative at

η = 0 and η = ℓ. Therefore the coefficients in the Fourier expansions above will, in general, decay only

as n−3 as n → ∞.

5.1 Euler–Lagrange equation for surface equilibrium

With the above Fourier representation, the Euler–Lagrange equation (4.1) decouples for each Fourier

mode, and we obtain:

(1+ k2ξ 2)
d2X

( j)
n

dξ 2
+ k2ξ

dX
( j)
n

dξ
+ k2

(

2

1+ k2ξ 2
−λ 2

n

)

X
( j)
n = 0 (5.6)

for each n, where

λn =
nπ

θ
. (5.7)

From (3.2) and (3.3), the boundary conditions at the border are

X
( j)
n = h

( j)
n ,

dX
( j)
n

dξ
= φ

( j)
n at ξ = 0 . (5.8)

For k > 0, we can use the changes of variables

w =−k2ξ 2 and X
( j)
n (ξ ) = (1−w)−1/2 f

( j)
n (w) (5.9)
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to transform the system (5.6)–(5.8) to the hypergeometric equation

w(1−w)
d2 f

( j)
n

dw2
+

1

2

d f
( j)
n

dw
−

1

4
(1−λ 2

n ) f
( j)
n = 0 , (5.10)

subject to

f
( j)
n = h

( j)
n ,

d f
( j)
n

dw
= φ

( j)
n at w = 0 . (5.11)

Equation (5.10) is the hypergeometric equation with parameters a = − 1
2
(1−λn), b = − 1

2
(1+λn) and

c = 1
2
. From §9.15 of Gradshteyn & Ryzhik (2000), the solution for f

( j)
n (w) can be written in terms

of two Gaussian hypergeometric functions F(a,b,c;w) and F(a− c+ 1,b− c+ 1,c;w). This solution is

then transformed back to the original variables to obtain

X
( j)
n (ξ ) = h

( j)
n Sn(ξ )+φ

( j)
n An(ξ ) , (5.12)

where

Sn(ξ ) =
1

(1+ k2ξ 2)1/2
F
(

− 1
2
(1−λn),−

1
2
(1+λn),

1
2
;−k2ξ 2

)

, (5.13)

An(ξ ) =
ξ

(1+ k2ξ 2)1/2
F
(

1
2
λn,−

1
2
λn,

3
2
;−k2ξ 2

)

. (5.14)

For k = 0, care is needed because λn becomes infinite if ℓ is finite. However, by writing λn =
nπ/(kℓ), the equation (5.6) can be solved directly when k = 0. We obtain a solution in the same form as

(5.12), but with

Sn(ξ ) = cosh

(

nπξ

ℓ

)

, An(ξ ) =
ℓ

nπ
sinh

(

nπξ

ℓ

)

. (5.15)

These solutions can also obtained by carefully taking the limits of (5.13) and (5.14) as k → 0 and λn →∞
with kλn = nπ/ℓ fixed.

5.2 Curved-wall boundary condition

Using (5.1)–(5.5) and (5.12), the Fourier-decomposition of the boundary conditions (4.2) at ξ = 1

implies

h
( j)
n

(

Sn(1)

1+ k2
− S′n(1)

)

+φ
( j)
n

(

An(1)

1+ k2
−A′

n(1)

)

= 0 , (5.16)

for each n and j.

We use the axial Fourier decompositions of the expressions (2.6) and (2.7) to obtain expressions for

h
( j)
n and φ

( j)
n in terms of hn, qn, cn and sn. Substituting these into (5.16), we obtain

(

−qn sinθ j + hn cosθ j

)

Rn +
(

φ̄n + cn cosθ j + sn sinθ j + . . .
)

= 0 , (5.17)

where we have introduced

Rn =
Sn(1)− (1+ k2)S′n(1)

An(1)− (1+ k2)A′
n(1)

. (5.18)
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(It is shown in Appendix A that the denominator of Rn is strictly negative, so the division by it is always

acceptable.)

Equating the Fourier coefficients for θ j in (5.17), we find2

φ̄n = 0 , cn =−Rnhn , sn = Rnqn . (5.19)

Substituting from the solutions (5.13)–(5.14) for Sn and An for k > 0, we find

Rn =−
3
(

F1 + k2(1−λ 2
n )F2

)

λ 2
n k2F3

, (5.20)

where

F1 = F
(

− 1
2
(1−λn),−

1
2
(1+λn),

1
2
,−k2

)

, (5.21)

F2 = F
(

1
2
(1+λn),

1
2
(1−λn),

3
2
,−k2

)

, (5.22)

F3 = F
(

1+ 1
2
λn,1−

1
2
λn,

5
2
,−k2

)

. (5.23)

The details of the calculation are provided in Appendix A. For k = 0, inserting (5.15) into (5.18), we

obtain the simpler expression

Rn =
µn(1− µn tanh µn)

tanh µn − µn

where µn =
nπ

ℓ
. (5.24)

This expression can also be obtained as the limit of (5.20), as k → 0 and λn → ∞ with kλn = nπ/ℓ fixed.

5.3 Plateau Border equilibrium conditions

We now decompose the border equilibrium conditions (4.17) and (4.18) into a half-wave Fourier sine

series in z. We note that the odd derivatives introduce cosines, which cause coupling between the Fourier

modes. (Since we are using half-wave Fourier series, the sine and cosine functions are not orthogonal.)

The relevant half-wave Fourier sine series for a general cosine function is

cos
(mπη

ℓ

)

=
∞

∑
n=1

bn sin
(nπη

ℓ

)

for η ∈ (0, ℓ) , (5.25)

where3

bn =







4n

π(n2 −m2)
: n+m ≡ 1 (mod 2) ,

0 : n+m ≡ 0 (mod 2) .

(5.26)

2For N > 3, the higher coefficients are not required for the subsequent calculations, because the associated forces sum to zero

when all the vanes are combined.
3This result can be derived by evaluating the standard expression for the coefficients bn , as given e.g. in formula 0.326 of

Gradshteyn & Ryzhik (2000).
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Decomposing (4.17) and (4.18) into their Fourier components, we find that

cn = B






(1+ 6λ 2

n +λ 4
n )k

4hn −
8k3

ℓ ∑
m≡n+1
(mod 2)

(2+λ 2
m+λ 2

n )
mnqm

n2 −m2







+T






(1+λ 2

n )k
2hn −

8k

ℓ ∑
m≡n+1
(mod 2)

mnqm

n2 −m2






. (5.27)

sn = B






−(1+ 6λ 2

n +λ 4
n )k

4qn −
8k3

ℓ ∑
m≡n+1
(mod 2)

(2+λ 2
m+λ 2

n )
mnhm

n2 −m2







+T






−(1+λ 2

n )k
2qn −

8k

ℓ ∑
m≡n+1
(mod 2)

mnhm

n2 −m2






. (5.28)

These decompositions are quite subtle. There are two different ways in which the third derivatives in

(4.17) and (4.18) could be represented, depending on the order in which the differentiation and the

decomposition of the cosine are carried out. It turns out that a combination of the two is required in

order to ensure that the expressions obtained for cn and sn decay as n → ∞. Full details of how the

decompositions are carried out can be found in Appendix C.

Recall that as n → ∞, the coefficients cn, sn, hn, qn are O(n−3) and λn = O(n). Hence in the

expressions (5.27) and (5.28) above, it can be seen that some of the individual terms on the right-

hand sides do not decay as n → ∞. This may appear to be problematic as we should have cn and sn

being O(n−3) on the left-hand sides. However, the boundary condition (4.19) places some additional

constraints on the qn and hn, which force the non-decaying components cancel out between the terms in

(5.27) and (5.28). The use of the specific decompositions derived in Appendix C ensure that this is the

case.

5.4 Summary

Equations (5.19), (5.27) and (5.28) form a homogeneous linear algebraic system for the coefficients

{cn,sn,qn,hn}. A non-zero solution of this system represents a non-zero equilibrium perturbation with

zero net energy change at O(ε2). The stability boundary coincides with a set of such solutions.

6. Stability boundary for N > 3

The stability boundary for any number of vanes N > 3 coincides since N is absent from the mathematical

description at this point. The case N = 2 is slightly different, as already mentioned, and is discussed in

Appendix D.

Eliminating cn and sn between (5.19) and (5.27)–(5.28), the stability boundary for N > 3 is given by
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points in θ–ℓ space where there are non-zero solutions for {hn,qn} to the linear system

[

Rn +T (1+λ 2
n )k

2 +B(1+ 6λ 2
n +λ 4

n )k
4
]

hn

−
8k

ℓ ∑
m≡n+1
(mod 2)

(

T +B
(

2+λ 2
m+λ 2

n

)

k2
) mn

n2 −m2
qm = 0 , (6.1)

[

Rn +T (1+λ 2
n )k

2 +B(1+ 6λ 2
n +λ 4

n )k
4
]

qn

+
8k

ℓ ∑
m≡n+1
(mod 2)

(

T +B
(

2+λ 2
m+λ 2

n

)

k2
) mn

n2 −m2
hm = 0 . (6.2)

We observe that the odd qn and even hn decouple from the even qn and odd hn, but the two sets of

terms satisfy essentially the same sets of equations. (This corresponds to two deformations of the border

related by a rotation of π/2 about the cylinder axis.) Both coupled sets of equations can be written in

the form

Mx = 0 (6.3)

where x = (h1,q2,h3,q4 . . .)
T or x = (q1,−h2,q3,−h4, . . .)

T , and the infinite matrix M has components:

Mnm =















Rn +T(1+λ 2
n )k

2 +B(1+ 6λ 2
n +λ 4

n )k
4 : n = m

(−1)n 8k

ℓ

(

T +B
(

2+λ 2
m+λ 2

n

)

k2
) nm

n2 −m2
: n+m ≡ 1 (mod 2)

0 : otherwise

(6.4)

for n,m ∈ {1,2,3, . . .}. The function Rn is given in terms of hypergeometric functions in (5.20), and

λn = nπ/θ = nπ/(kℓ) as in (5.7). So, given values for T , B, k and ℓ, the matrix M is known.

Observe that the matrix M is real and symmetric. Solutions to the homogeneous equations (6.1) and

(6.2) occur precisely when the matrix M has a zero eigenvalue. It is then a matter of finding the values

of the parameters T , B, k and ℓ that make this happen.

6.1 Limit of a weak border (small T and B)

When T = B = 0, the matrix M becomes diagonal with diagonal elements Rn. Zero eigenvalues there-

fore occur when Rn = 0 for each n. These are precisely the solutions found by Whittaker & Cox (2015),

and the n = 1 root corresponds to the stability boundary.

When T,B ≪ 1, the eigenvalues are still approximated by the diagonal elements, as the off-diagonal

elements are small. With errors of O(T 2,B2), the zero determinant close to the T = B = 0 solution at

R1 = 0 occurs when

M11 ≡ R1 +T (1+λ 2
1 )k

2 +B(1+ 6λ 2
1 +λ 4

1 )k
4 = 0 . (6.5)

For a fixed k, we then have

θ = θ0(k)−

[

T (1+λ 2
1 )k

2 +B(1+ 6λ 2
1 +λ 4

1 )k
4

∂ R1/∂θ

]

θ=θ0(k)

+O(T 2,B2) , (6.6)

where θ = θ0(k) is the solution of R1 = 0. However, θ0(k) must still be found numerically.
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6.2 Limit of small twist (small k)

In the limit k → 0, the matrix M also becomes diagonal, though care needs to be taken with the behaviour

of λn and Rn. The former behaves as k−1 (but all the terms are regularised by sufficient explicit multiples

of k) and the latter tends to the expression in (5.24). Hence the limiting diagonal entries are given by

Mnn =
µn(1− µn tanh µn)

tanh µn − µn

+T µ2
n +Bµ4

n , (6.7)

where µn = nπ/ℓ, while the off-diagonal elements all vanish. Hence the critical perturbation modes are

precisely the individual axial Fourier modes. The possible solutions to Mnn = 0 can be examined by

considering the function

f (µn,B) =
1− µn tanh µn

µn(µn − tanh µn)
−Bµ2

n . (6.8)

The equation Mnn = 0 is then equivalent to T = f (µn,B). Furthermore, we observe that the nth axial

Fourier mode is stable when T > f (µn,B) and unstable when T < f (µn,B).
The function f (µn,B) is illustrated in figure 3. As can be seen there, when B > 0, the nth axial

Fourier mode is always stable for sufficiently small ℓ and unstable for sufficiently large ℓ, whatever

the value of T . As ℓ varies while B, T and n are held fixed, there is generally a single solution to

T = f (µn,B) dividing these two regimes. However, when 0 < B < B∗ = 0.02803 there is a finite range

of negative T in which there are three solutions rather than just one. (See figure 3 inset.) For such

values of T and B, the mode is stable for small ℓ, then as ℓ increases it passes through a finite region of

instability, then a finite region of stability, before becoming unstable again for large ℓ.
When T = B = 0, the nth mode is stable for ℓ/n 6 2.6187 and unstable for ℓ/n > 2.6187. The

additional finite unstable region arises physically because the combined effect of the border mechanics

is to disproportionally destabilise wavelengths of O(
√

−B/T). When the destabilised wavelengths are

sufficiently shorter than 2.6187 and the destabilisation is large enough but not too large, this can cause

the additional finite window of instability to appear below 2.6187. This leads to the possibility that for

given parameter values, a point will be in the finite stable region for the n = 1 mode, but in the finite

unstable region for the n = 2 mode. Examining figure 3, an example of this occurring can be seen when

B = 0.001, T = −0.3, and ℓ = 1.4. With these values and n = 1, we have ℓ/n = 1.4, which is stable.

But for n = 2, we have ℓ/n = 0.7, which is unstable.

6.3 Full numerical solution

For the full problem (for general k, T and B), the elements on the leading diagonal of M increase at least

as fast as O(1,Tn2,Bn4) (owing to λn). The off-diagonal elements increase at most as fast as O(T n,Bn3)
(when m = n± 1). So on later rows of the matrix the diagonal elements dominate. We should therefore

be able to obtain approximate solutions by looking for zeros of the determinant of a truncated version

of the matrix.

It is then a matter of finding the curves in θ–ℓ space where the determinant vanishes, and identifying

which corresponds to the critical case of the first mode becoming unstable. Results obtained using an

interval bisection method to find zeros for a fixed k and varying ℓ are shown in figures 4–6. The method

was implemented in Matlab. To avoid numerical overflow it is convenient to scale the (n,m)th entry

of M by Bn2m2π4/ℓ4
est (for B 6= 0) or T nmπ2/ℓ2

est (for B = 0), where ℓest is the centre of the initial

interval for ℓ. This ensures that the dominating diagonal entries Mnn tend to something close to unity as

n becomes large. (A fixed ℓest is used in preference to the current value of ℓ, in order to avoid having to
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FIG. 3. Main graph: Plot of f (µn,B) (as defined in (6.8)) as a function of ℓ for various values of B. When θ = 0, solutions to

det(M) = 0 occur precisely when T = f (µn,B). For given B and T there are either 1, 2 or 3 solutions for ℓ/n. A cusp catastrophe

occurs at (B,T ) = (0.02803,−0.56141) where the curve of f (µn,B) has a stationary point of inflection (marked by a filled circle

on the graph). For given parameter values, the nth mode is stable if the point (ℓ/n,T ) lies on or above the appropriate curve

on the graph. Inset: Numerically computed bifurcation lines in the B–T plane, dividing the region of 1 solution (clear) and 3

solutions (shaded) for ℓ/n. For a given B, the boundaries are given by T = f when ∂ f/∂ℓ = 0. The upper boundary is almost

indistinguishable from its small-B asymptotic form T =−(3/22/3)B1/3 (shown by the dashed line).

re-compute as many entries in the matrix at each iteration.) Rather than computing the determinant, we

only need to know its sign for the interval bisection method. This can be more conveniently determined

from a singular value decomposition (see, e.g., Trefethen, 1997), rather than explicitly computing the

determinant. Also, to speed up the calculations, the asymptotic forms for hypergeometric functions

given by Watson (1918) can be used to approximate Rn when λn is suitably large.

6.4 Simulations using the Surface Evolver

The geometry of soap films is, to a large extent, driven by their minimisation of surface energy, or

surface area (at constant surface tension γ). In seeking to determine the shape of the twisted vanes in

a cylinder in the case N = 3, we choose to compare our solutions with the output of a full numerical

simulation performed in the Surface Evolver (Brakke, 1992), software designed expressly to find the

equilibrium shape of energy-minimising surfaces. The Surface Evolver also provides energy methods

to accommodate line tensions and bending energies.

Our simulations are of a rather standard type. The initial geometry has three planar films, with

surface tension set to γ = 1, constrained by the sides and ends of a fixed cylinder of radius R = 1. The

films meet along a line, the Plateau border, which initially lies straight along the axis of the cylinder,
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and has a fixed line tension. To the border we also apply a curvature, or bending, energy.

To be precise, we construct the energy functional given in (A.1)–(A.6). The line tension is con-

structed as an additional energy by summing the lengths of the line segments making up the central

Plateau border (Evolver’s edge length method) and weighting the result with the required line tension

τ = 3
2
T . In this way negative line tensions, which reduce the total energy, can be accommodated. Sim-

ilarly, the bending energy of the Plateau border is also an energy quantity, involving the integral of the

squared curvature along the Plateau border. This is constructed using Evolver’s sqcurve string marked

method (effectively the sum of the angle deficits at each vertex of the discretized Plateau border, nor-

malised by the adjacent edge lengths), with weight 1
2
β = 3

4
B. (The additional factor of one-half here

arises from the factor multiplying the square-curvature integral in (A.6).)

At the start of each simulation, the films are subdivided (discretized) into small triangles and the

border into short edges. In cases in which the theoretical prediction is that there is a unique critical

length ℓ for given twist angle θ , an initial length ℓ is chosen, slightly smaller than the predicted critical

one, and the films are twisted to a fixed θ . The length ℓ is then increased in steps of ∆ℓ = 0.01, with

all vertices of the tessellation shifted up affinely, followed by 1400 area-minimizing iterations and any

necessary adjustments to the tessellation as described below. The critical length beyond which instability

occurs is detected by checking the eigenvalues of the Hessian of energy (see Brakke, 1996): when there

is one or more negative eigenvalue, we stop the calculation and record the last stable value of ℓ. If the

stability boundary is not a single-valued function of θ (e.g. figure 6 with T = −0.5 and B = 0.02) we

invert this procedure, and (for small values of θ ) increase the twist angle towards the instability at fixed

length ℓ, later merging this with the data obtained at fixed, large, θ by stretching.

Setting the bounds on the area and length of the triangles and sub-edges respectively is the main

subtlety of the simulation. As Kern & Weaire (2003) point out, in the negative line tension model

we should expect further instabilities associated with the discretisation of the Plateau border into short

edges, and care is required in choosing the bounds. The triangles of the film tessellation are subdivided

whenever one of their sides exceeds a certain length (which depends upon radial distance from the

Plateau border: we use 0.015 within a distance of 0.1R, where greater accuracy is required, and 0.25

beyond that) and removed whenever their area shrinks below a critical value of 5× 10−5. We are also

careful to further refine at high twist angles to remain within these bounds, having found such high

refinement necessary to achieve the desired accuracy, despite the high computational cost. (Each line

of data shown in figure 4, for example, can require up to two months to generate on a desktop PC,

although this can be reduced if the theoretically-predicted critical parameters are used to inform the

initial condition.)

7. Results and Discussion

The results of our theoretical solutions and the Surface Evolver simulations are shown in figures 4–6,

where we see excellent agreement between the two methods. The lines represent the stability boundaries

for the different parameter values, with the system being stable to the left of each line and unstable to

the right. As expected, positive line tension T and positive bending stiffness B are both stabilising

effects. A combination of positive bending stiffness and negative tension will stabilise short wavelength

perturbations and destabilise longer ones.

We can further understand the effect of the border on the stability of the system when T < 0 and B <
0 by considering the energy changes in the border under two specific perturbations. First we consider

the fundamental (n = 1) planar axial mode q(z) = sin(πz/ℓ)cos(kℓ), h(z) =−sin(πz/ℓ)sin(kℓ). Using

the expressions (A.16) and (A.19) we can see that this perturbation of the border is energetically neutral
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FIG. 4. Stability boundary results for with B = 0 and varying values of T > 0. Lines: Theoretical results results looking for the

first zero of det(M) using a truncation at 400 rows. Points: Numerical results from the Surface Evolver. The region of stability

lies to the left of each curve.
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FIG. 5. Stability boundary results for with T = 0 and varying values of B > 0. Lines: Theoretical results obtained by looking for

the first zero of det(M) using a truncation at 400 rows. Points: Numerical results from the Surface Evolver. As in figure 4, the

region of stability lies to the left of each curve.
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FIG. 6. Stability boundary results for B> 0 and T < 0 with B/T =−0.04, so the border is stable to short wavelengths, but unstable

to long wavelengths. Coloured lines: theoretical results obtained by looking for the first zero of det(M) using a truncation at

n = 400 rows. Points: numerical results from the Surface Evolver. The vertical black line is ℓ= π
√

−B/T , where the fundamental

planar axial mode is energetically neutral for the border in isolation. The dashed black line is (7.1) where the fundamental vane-

aligned twisted axial mode is energetically neutral for the border in isolation.

when ℓ = π
√

−B/T . Any other perturbations at this length and any perturbations at a shorter length

will result in an increase in energy in the border. Hence for ℓ < π
√

−B/T the system must be stabilised

compared with the T = B = 0 case. Hence in figure 6 the region to the left of ℓ= π
√

−B/T and below

the T = B = 0 curve is necessarily stable.

Secondly, we consider the n = 1 vane-aligned twisted axial mode q(z) = sin(πz/ℓ), h(z) = 0. This

represents the most unstable mode for the vanes in the absence of the border mechanics. Again using

the expressions (A.16) and (A.19) we see that this perturbation is energetically neutral for the border

when

ℓ= π

√

−B

T

1+ 6(θ/π)2+(θ/π)4

1+(θ/π)2
. (7.1)

For larger values of ℓ, the most unstable vane perturbation results in a decrease in the energy in the

border. Hence in figure 6, the region to the right of this line and above the T = B= 0 curve is necessarily

unstable.

One striking aspect of the results is the strong stabilisation given to highly twisted configurations

at low aspect ratios (including really extreme twists). Even a very small positive tension or bending

stiffness will stabilise a sufficiently short (small ℓ for any fixed θ 6= 0) border. This is partly because the

vane-driven instability is relatively weak for short highly twisted borders. However, it is also because

the unstable perturbations in the absence of any border mechanics are aligned with the vanes, and would

therefore result in highly twisted borders with a very short axial pitch. These large wavenumber twists

are strongly stabilised by the border mechanics.
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The same applies for a combination of negative tension and positive bending stiffness (see figure 6).

Even for the fundamental axial mode, the vane-driven instability at large k would lead to a highly twisted

border, which has a short-wavelength and is therefore stabilised by the border mechanics.

We also observe that for positive T and B in figures 4 and 5 the neutral stability curves fold back on

themselves as θ increases. In some regimes, increasing θ at fixed ℓ first reduces the stability and then

increases it again. This can be explained by the competing mechanisms from the vanes and the border.

Increasing θ destabilises the vanes, but as θ increases further, the most unstable vane mode is aligned

with the twisted vanes in the base state, and there results in a highly contorted border. The resulting

border deformation is therefore stabilised by the border mechanics at higher θ . This effect is not seen

in figure 6 where T < 0 and B > 0, as the result of the border mechanics dominating at large θ is that

the stability boundary there lies close to ℓ = π
√

−B/T where the border perturbation is energetically

neutral.

Another interesting phenomenon arises because of the preferential stabilising and destabilising of

short wavelengths by the border mechanics. A negative tension T will preferentially destabilise short

wavelengths, while a positive bending stiffness B will preferentially stabilise even shorter wavelengths.

For certain parameter values, this can lead to an unstable ‘island’ of wavelengths between a short-

wavelength stable region (stabilised by border bending) and a longer-wavelength stable region (sta-

bilised by the vanes). (The usual long-wavelength unstable region due to the vanes occurs at even

longer wavelengths.) With the right parameter values, this can result in an n = 2 (or a higher) axial

mode being unstable, while lower-order axial modes are stable. This is contrary to the usual expecta-

tion that the modes become more stable as their axial wavenumber increases. For example, examining

figure 3, we see that when θ = 0, ℓ = 1.4 B = 0.001 and T = −0.3, the n = 1 mode is stable, while

the n = 2 mode is unstable. Similarly, it is also possible, as illustrated by the (T,B) = (−0.52,0.0208)
curve in figure 6, for an unstable system to be stabilised by increasing ℓ.

8. Conclusions

In this paper, we have considered the effect of line tension and bending stiffness of a Plateau border on

the stability of a simple system involving a border and three vanes with uniform surface tension. The

stability boundary is found in terms of an aspect ratio ℓ, the twist angle of the vanes θ , a dimensionless

border tension T and a dimensionless border bending stiffness B. The method involves decomposing

a general perturbation as an axial Fourier series, and then applying conditions for it to have minimal

energy, and be a critical perturbation in the sense that there is no second-order energy variation.

Whittaker & Cox (2015) considered the same problem in the absence of border tension and bending

stiffness. They showed that twisting the vanes or lengthening the border destabilises the system. The

most unstable mode is the fundamental mode that occupies the whole length of the border and displaces

the border sideways in alignment with one of the vanes.

As would be expected, positive line tension and positive bending stiffness are both stabilising effects,

particularly at short wavelengths. A combination of positive bending stiffness and negative tension (as is

anticipated in real-life foams) will stabilise short wavelength perturbations and destabilise longer ones.

We have quantified these effects theoretically, as shown in figures 4–6. The results of our theoretical

calculations are in excellent agreement with simulations carried out using Surface Evolver.

This work represents only a first insight into the effects of the mechanics of a Plateau border on the

stability of a foam. It introduces the possibility of a new mechanism to promote foam break-up, as in

anti-foam applications, by constructing a flow in which the Plateau borders are lengthened and twisted.

The precise effect of the border mechanics on this mechanism within a real foam is not yet clear, as the
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stabilising and de-stabilising effects are dependent on the values of T and B.

Further theoretical work is needed in two directions. First, modelling of the border itself should

be used to derive the actual mechanical response to deformations (and hence appropriate values for

B and T — assuming the linear model is appropriate). It is possible that in addition to bending and

stretching energies, there may also be energy penalties associated with axial variation in the twist of the

vanes about the border axis, and that the dihedral angles between pairs of vanes should also be taken

into account. Secondly, the results for the stability of a single twisted border need to be up-scaled and

applied to the network of borders in a foam.

It would also be interesting to perform experiments, both on bulk foam systems and on the single

border setup considered here. For the latter (which would extend the experiments of Cox & Jones, 2014)

it would be necessary to ensure gravity did not play a role, and to find a suitable way of varying T and

B independently. One variation can be achieved by varying the cylinder radius R, but for the second

variation, the liquid content of the border or the surface tension of the fluid would need to be altered.
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A. Hypergeometric functions for Rn

In this appendix, we evaluate the combinations of hypergeometric functions in Rn, as defined in (5.18).

We shall also prove that the denominator of Rn is always strictly negative for k > 0.

We first note from the series representation of the hypergeometric function (see, e.g. §9.1 of Grad-

shteyn & Ryzhik, 2000) that

F′(a,b,c;z)≡
∂

∂ z

(

F(a,b,c;z)
)

=
ab

c
F(a+ 1,b+ 1,c+ 1;z) . (A.1)

Then, using (5.13) we have that the numerator in Rn is

Sn(1)− (1+ k2)S′n(1) =
1

(1+ k2)1/2
F
(

− 1
2
(1−λn),−

1
2
(1+λn),

1
2
;−k2

)

+
k2

(1+ k2)1/2
F
(

− 1
2
(1−λn),−

1
2
(1+λn),

1
2
;−k2

)

+ 2k2(1+ k2)1/2 F′
(

− 1
2
(1−λn),−

1
2
(1+λn),

1
2
;−k2

)

,

= (1+ k2)1/2
[

F1 + k2(1−λ 2
n )F2

]

, (A.2)

where F1 and F2 are as defined in (5.21) and (5.22). Using (5.14) we have that the denominator in Rn
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is

An(1)− (1+ k2)A′
n(1) =

1

(1+ k2)1/2
F
(

1
2
λn,−

1
2
λn,

3
2
;−k2

)

− (1+ k2)1/2F
(

1
2
λn,−

1
2
λn,

3
2
;−k2

)

+
k2

(1+ k2)1/2
F
(

1
2
λn,−

1
2
λn,

3
2
;−k2

)

+ 2k2(1+ k2)1/2F′
(

1
2
λn,−

1
2
λn,

3
2
;−k2

)

= 2k2(1+ k2)1/2F′
(

1
2
λn,−

1
2
λn,

3
2
;−k2

)

= − 1
3
λ 2

n k2(1+ k2)1/2
F3 , (A.3)

where F3 is as defined in (5.23). Combining the results (A.2) and (A.3) gives us the expression (5.20)

for Rn.

We can further examine the behaviour of the denominator, by making use of the result

F(a,b,c;z)≡ (1− z)−a F

(

a,c− b,c;
z

z− 1

)

(z 6= 1) (A.4)

from formula 9.131 of Gradshteyn & Ryzhik (2000). Applying this result to the hypergeometric function

for F3 in (5.23), we obtain

F3 =
1

(1+ k2)1+λn/2
F

(

1+ 1
2
λn,

3
2
+ 1

2
λn,

5
2
,

k2

1+ k2

)

. (A.5)

Now, we know λn > 0, so for k > 0 all the arguments of the hypergeometric function are strictly positive.

We also have k2/(1+ k2) ∈ (0,1), and so the standard series representation of F converges. Since each

term in this series representation is positive, we then have that the hypergeometric function above is

strictly positive. Hence F3 > 0, and thus, from (A.3), we have

An(1)− (1+ k2)A′
n(1)< 0 for k > 0 . (A.6)

For k = 0, we have An(ξ ) = µ−1
n sinh(µnξ ) from (5.15), where µn = nπ/ℓ > 0. Therefore

An(1)− (1+ k2)A′
n(1) =

sinh µn

µn

− coshµn =−
cosh µn

µn

(

µn − tanhµn

)

< 0 for k = 0 . (A.7)

Hence the denominator of Rn is always strictly negative when k > 0.

B. Proof that the equilibrium conditions imply zero second variation in energy

In this appendix, we shall verify the statement made in §4.4, namely that the displacement and equilib-

rium conditions (3.1)–(3.7), (4.1), (4.2), and (4.17)–(4.19) together imply that the O(ε2) energy change

of the system is zero.

B.1 Total energy

The total (dimensional) energy E ∗ in the vane and border system can be written as

E
∗ = γA

∗+ τL
∗+βK

∗ (A.1)
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where A ∗ is the total area of the vanes, L ∗ is the total length of the border, and K ∗ is half the integral

of the curvature-squared along the border. We non-dimensionalise these quantities using the surface

tension γ and the length scale R:

E
∗ = γR2

E , A
∗ = R2

A , L
∗ = RL , K

∗ = R−1
K . (A.2)

Recalling the definitions (2.1) of T and B, we obtain the non-dimensional energy equation

E = A +
N

2

(

TL +BK

)

, (A.3)

where

A =

∫

V

dA =
N−1

∑
j=0

∫ ℓ

0

∫ ξ
( j)
+

ξ
( j)
0

∣

∣

∣

∣

∣

∂x( j)

∂ξ
×

∂x( j)

∂η

∣

∣

∣

∣

∣

dξ dη , (A.4)

L =
∫

B

ds =
∫ ℓ

0

∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

dz , (A.5)

K =
1

2

∫

B

∣

∣

∣

∣

d2r

ds2

∣

∣

∣

∣

2

ds =
1

2

∫ ℓ

0

∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

−1 ∣
∣

∣

∣

d

dz

(∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

dr

dz

)∣

∣

∣

∣

2

dz . (A.6)

Here V is the two-dimensional region of space occupied by the vanes, dA is an area element, B is the

line occupied by the border, and s is the arc length along the border. The area integral (A.4) was derived

by Whittaker & Cox (2015). The other two integrals (A.5) and (A.6) arise straightforwardly by using

(4.12) to convert from the arc-length coordinate s to the axial coordinate z.

B.2 Energy in the vanes

The dimensionless energy in the vanes due to surface tension effects is given by the integral for A in

(A.4). An expansion for A was derived by Whittaker & Cox (2015), using the surface geometry and

the fact that the perturbed surface satisfies the Euler–Lagrange equations (4.1):4

A = A0 + εA1 + ε2
A2 +O(ε3) (A.7)

where

A0 =
Nℓ

2

(

sinh−1 k

k
+(1+ k2)1/2

)

, (A.8)

A1 =
N−1

∑
j=0

∫ ℓ

0
q( j)(z)dz , (A.9)

A2 =
1

2

N−1

∑
j=0

∫ ℓ

0

[

(1+ k2ξ 2)1/2ζ ( j) ∂ζ ( j)

∂ξ

]ξ=1

ξ=0

− (1+ k2)−1/2ζ
( j)
+

2
dz . (A.10)

4Note that there is an error in equation (4.21) of Whittaker & Cox (2015), which has been corrected in equation (A.10) here. In

the second line of (4.21) in Whittaker & Cox (2015), it should have been k2ξ 2 rather than just k2 in the first integral. In the final

line, the coefficient multiplying h jφ should have been −1 rather than −(1+ k2)1/2. This error did not affect any other results in

the that paper, as ∑ j h jφ = 0.
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Inserting the expression (2.5) for q( j) into (A.9) reveals that

A1 = 0 , (A.11)

since ∑N−1
j=0 sinθ j = ∑N−1

j=0 cosθ j = 0.

Using the equilibrium condition (4.2) and the boundary conditions (3.2) and (3.3) in (A.10), we find

that

A2 =−
1

2

N−1

∑
j=0

∫ ℓ

0
h( j)(z) φ ( j)(z)dz+O(ε) . (A.12)

We now substitute for h( j) using (2.6), and make use of the expressions (2.9) and (2.10) in order to

evaluate the sums involving φ ( j):

A2 = −
1

2

N−1

∑
j=0

∫ ℓ

0

(

−q(z) sin θ j + h(z) cosθ j

)

φ ( j)(z)dz+O(ε) , (A.13)

= −
N

4

∫ ℓ

0

(

−q(z)s(z)+ h(z)c(z)
)

dz+O(ε) . (A.14)

B.3 Energy in the border

From (A.3), the dimensionless energy in the border from the tension and bending stiffness is given by

(N/2)(TL +BK ).
To evaluate the integral (A.5) for L , we use the expression (4.13) to obtain

∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

= 1+
1

2
ε2

[

(

h′(z)+ kq(z)
)2

+
(

q′(z)− kh(z)
)2

]

+O(ε4) . (A.15)

Substituting this into (A.5), we then find

L = ℓ+
1

2
ε2

∫ ℓ

0

[

(

h′+ kq

)2

+
(

q′− kh

)2
]

dz+O(ε4) . (A.16)

After expanding the squares, we can use integration by parts to obtain

L = ℓ−
1

2
ε2

∫ ℓ

0

[

h
(

h′′+ 2kq′− k2h
)

+ q
(

q′′− 2kh′− k2q
)]

dz+O(ε4) . (A.17)

The boundary condition (3.7) means that the boundary terms all vanish.

To evaluate the integral (A.6) for K , we first use (4.14) to write

∣

∣

∣

∣

dr

dz

∣

∣

∣

∣

−1 ∣
∣

∣

∣

d

dz

(∣

∣

∣

∣
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∣

∣

∣
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)∣

∣

∣

∣

2

=

∣

∣

∣

∣

d

dz

(

dr

dz

)∣

∣

∣

∣

2(

1+O(ε2)
)

. (A.18)

Evaluating the right-hand-side using (2.4) and substituting the result into (A.6), we obtain

K =
1

2
ε2

∫ ℓ

0

[

(

h′′+ 2kq′− k2h
)2

+
(

q′′− 2kh′− k2q
)2
]

dz+O(ε4) . (A.19)
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Again, we can expand the squares and use integration by parts. This time, however, the boundary

condition (3.7) does not allow us to eliminate all of the boundary terms. We obtain

K =
1

2
ε2

∫ ℓ

0

[

h
(

h′′′′+ 4kq′′′− 6k2h′′− 4k3q′+ k4h
)

+ q
(

q′′′′− 4kh′′′− 6k2q′′+ 4k3h′+ k4q
)]

dz

+
1

2
ε2

[

h′
(

h′′+ 2kq′− k2h

)

+ q′
(

q′′− 2kh′− k2q

)

]ℓ

0

+O(ε4) . (A.20)

The boundary terms in (A.20) have been specially constructed by adding and subtracting ε2k2h′q′, and

by adding terms proportional to h and q, which are both zero at z = 0, ℓ by (3.7). Then, using the

equilibrium condition (4.19), we see that these boundary terms also vanish.

Combining the expressions (A.17) and (A.20) for L and K , and applying the equilibrium condi-

tions (4.17) and (4.18), we find

TL +BK = T ℓ+
1

2
ε2

∫ ℓ

0

(

h(z)c(z)− q(z)s(z)
)

dz+O(ε4) . (A.21)

B.4 Combined result

Substituting the expressions for Ai into (A.7), and then using this and (A.21) in (A.3), we find that the

total energy is

E =
Nℓ

2

(

sinh−1 k

k
+(1+ k2)1/2

)

+
NT ℓ

2
+O(ε3) . (A.22)

Hence the energy change under a perturbation that satisfies the equilibrium conditions (4.1), (4.2),

(4.17), (4.18) and (4.19) is at most O(ε3).

C. Details of the Fourier decomposition

The Fourier decomposition of (4.17) and (4.18) is subtle because those equations contain third and

fourth derivatives of h and q. The Fourier series for h and q are only expected to decay as O(n−3),
and hence the series for h′′′ and q′′′ obtained by differentiating term by term will not converge. In this

appendix, we derive the correct decomposition by making use of the boundary condition (4.19). This

condition guarantees faster convergence of certain combinations of coefficients.

The Fourier series (5.3) for h and q are motivated by the boundary conditions (3.7) which mean

the functions vanish at z = 0, ℓ. This means that when the functions are extended to odd functions on

(−ℓ,ℓ), they will be 2ℓ-periodic with continuous first derivatives. In general, the second derivatives will

be expected to have discontinuities at z = 0, ℓ. This means that the coefficients of Fourier sine series

for h and q will, in general, decay as O(n−3). A cosine series for the first derivatives and a sine series

for the second derivatives can be computed by differentiating term by term. But this cannot be done for

higher derivatives, as the resulting series will not converge.

Nevertheless, we would expect the overall right-hand-sides of (4.17) and (4.18) to have convergent

Fourier sine series (as we know that the left-hand sides will), and to be able to relate them to the series

for h and q. To achieve this we define

H(η) = h′′(η)+ 2kq′(η)− k2h(η) , Q(η) = q′′(η)− 2kh′(η)− k2q(η) , (A.1)
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which are curvatures of the border in the directions perpendicular and parallel to the 0th vane. By (4.19),

H and Q vanish at η = 0, ℓ and so, by the arguments above, the coefficients Hn and Qn in the Fourier

sine series

H(η) =
∞

∑
n=1

Hn sin(µnη) , Q(η) =
∞

∑
n=1

Qn sin(µnη) (A.2)

will decay at least as O(n−3). (Here we have again used the shorthand notation µn = nπ/ℓ.) But since

the series (5.3) for h and q converge sufficiently fast to allow first and second derivatives to be computed

we have, by decomposing (A.1) and making use of (5.25):

Hn = −
(

µ2
n + k2

)

hn +
8k

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmqm

n2 −m2
, (A.3)

Qn = −
(

µ2
n + k2

)

qn −
8k

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmhm

n2 −m2
. (A.4)

While the individual terms on the right-hand-sides of (A.3) and (A.4) may not decay as quickly as

O(n−3), overall Hn and Qn will be O(n−3) as n → ∞. We can therefore differentiate twice term-by-term

to obtain series for the second derivatives:

H ′′(η) =−
∞

∑
n=1

H
(2)
n sin(µnη) , Q′′(η) =−

∞

∑
n=1

Q
(2)
n sin(µnη) , (A.5)

where

H
(2)
n =−µ2

n Hn , Q
(2)
n =−µ2

n Qn . (A.6)

By differentiating (A.2) once and then using (5.25), we can derive series for the first derivatives:

H ′(η) =
∞

∑
n=1

H
(1)
n sin(µnη) , Q′(η) =

∞

∑
n=1

Q
(1)
n sin(µnη) , (A.7)

where

H
(1)
n =

4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmHm

n2 −m2

= −
4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmhm

n2 −m2

(

µ2
m + k2

)

+
32k

ℓ2

∞

∑
p,m=1

m6≡n (mod 2)
p 6≡m (mod 2)

nm

n2 −m2

mpqp

m2 − p2
, (A.8)

Q
(1)
n =

4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmQm

n2 −m2

= −
4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmqm

n2 −m2

(

µ2
m + k2

)

−
32k

ℓ2

∞

∑
p,m=1

m6≡n (mod 2)
p 6≡m (mod 2)

nm

n2 −m2

mphp

m2 − p2
. (A.9)
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We now note that, when n and p are positive integers,

∞

∑
m=1

m6≡n (mod 2)
m6≡p (mod 2)

m2

(m2 − n2)(m2 − p2)
=

π2

16
δnp . (A.10)

The result (A.10) can be derived either by applying Parseval’s theorem to (5.25), or algebraically by

using partial fractions and carefully re-arranging terms. Using (A.10), the double sums in (A.8) and

(A.9) can be simplified, and we obtain

H
(1)
n = −

4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmhm

n2 −m2

(

µ2
m + k2

)

− 2kµ2
n qn , (A.11)

Q
(1)
n = −

4

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmqm

n2 −m2

(

µ2
m + k2

)

+ 2kµ2
n hn . (A.12)

We are now in a position to evaluate the Fourier decomposition of (4.17) and (4.18). Starting with

(4.17), we first re-write the right-hand-side using H and Q, to obtain

c(z) = B

(

H ′′(z)+ 2kQ′(z)− k2H(z)
)

−T H(z) . (A.13)

Now, using the Fourier series in (5.5) and (A.2)–(A.12), and equating coefficients, we obtain

cn = B
(

H
(2)
n + 2kQ

(1)
n − k2Hn

)

−T Hn , (A.14)

= B







[

(

µ2
n + k2

)2

+ 4k2µ2
n

]

hn −
8k

ℓ

∞

∑
m=1

m6≡n (mod 2)

(

2k2 + µ2
n + µ2

m

) nmqm

n2 −m2







+T







(

µ2
n + k2

)

hn −
8k

ℓ

∞

∑
m=1

m6≡n (mod 2)

nmqm

n2 −m2






. (A.15)

This simplifies to (5.27). The same procedure is used to obtain (5.28) from (4.18). While some of

the individual terms do not converge (e.g. µ4
n hn = O(n)) as n → ∞, the boundary conditions at z = 0, ℓ

ensure that the divergent behaviour on the right-hand side cancels out and yields a convergent expansion

overall.

D. Stability boundary for N = 2

When N = 2, we have two vanes emanating from the central border. The tension and bending forces

in the border mean that stability properties will be different from a single film lying across a diameter.

This situation could be thought of as modelling as a single vane with some form an elastic fibre running

along the centre-line.

Physically, this situation is slightly different from N > 3, as the border line may deform within the

surface of the two vanes without any deformation of the surfaces, and so without any net effect from the
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surface tension forces in the vanes. This means that if the line itself is unstable to an in-vane mode,5 then

the whole system is unstable, unless an external constraint is added to prevent this mode of deformation.

Conversely, if the line itself is stable, then the line forces will try to keep its perturbation within the

surface to zero. However, the in-vane and out-of-vane displacements are coupled for k > 0, because the

twist in the orientation of the vanes and the forces arises from the border curvature. Between the two

extreme cases described above, there could be unstable or stable mixed modes.

Mathematically, the differences for N = 2 arise from the fact that only the first two terms are needed

in the expansion of φ ( j) in (2.7), as sin θ j = 0 and hence s(z) is undefined. The changes that are required

to adapt the calculations for N = 2 in §§2–6 are as follows.

In (2.9) the formula for recovering c(z) is different when N = 2 (see Appendix F of Whittaker &

Cox, 2015), and we instead obtain

c(z) =
1

N

N−1

∑
j=0

φ ( j)(z)cosθ j . (A.1)

Equation (2.10) for s(z) does not arise as s(z) is undefined.

When summing over j to obtain (4.8) we have sinθ j = 0, so these terms all vanish. We instead

obtain
N−1

∑
j=0

f
( j)
γ = 2εc(z)b̂(z)+O(ε2) , (A.2)

where the factor of 2 arises from the different expression (A.1) for c(z). The left-hand sides of (4.17) and

(4.18) are then replaced by 2c(z) and 0 respectively. These replacements also carry forward to (5.27)

and (5.28). Since sinθ j = 0 in (5.17) we cannot equate those coefficients, and hence the sn equation in

(5.19) does not arise.

The elimination of cn between (5.19) and (5.27) proceeds as before, but with an additional factor of

2. There is no sn to be eliminated from (5.28). Equation (6.1) is thus altered by having R replaced by

2R, and (6.2) is altered by having R replaced by 0. Therefore the decoupling between the odd qn and

even hn on one hand, and the even qn and odd hn still occurs, but now there are two different matrix

equations to be satisfied.

Labelling these matrices M(0) and M
(1), their coefficients are given by

M
(p)
nm =















InpRn +T (1+λ 2
n )k

2 +B(1+ 6λ 2
n +λ 4

n )k
4 : n = m

(−1)n 8k

ℓ

(

T +B
(

2+λ 2
m+λ 2

n

)

k2
) nm

n2 −m2
: n+m ≡ 1 (mod 2)

0 : otherwise

(A.3)

where

Inp =

{

0 : n ≡ p (mod 2)
2 : n 6≡ p (mod 2)

. (A.4)

The stability boundary for N = 2 can be found as above, by seeking points in parameter space at which

one of M(0) or M(1) has a zero eigenvalue.
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