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UNIT 8.3 - VECTORS 3

MULTIPLICATION OF ONE VECTOR BY ANOTHER

8.3.1 THE SCALAR PRODUCT (or “Dot” Product)

DEFINITION

The “Scalar Product” of two vectors a and b is defined as ab cos θ, where θ is the angle
between the directions of a and b, drawn so that they have a common end-point and are
directed away from that point. The Scalar Product is denoted by a • b so that

a • b = ab cos θ
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Scientific Application

If b were a force of magnitude b, then bcos θ would be its resolution (or component) along
the vector a. Hence, a•b would represent the work done by b in moving an object along the
vector a. Similarly, if a were a force of magnitude a, then acos θ would be its resolution (or
component) along the vector b. Hence, a • b would represent the work done by a in moving
an object along the vector b.

8.3.2 DEDUCTIONS FROM THE DEFINITION OF DOT PRODUCT

(i) a • a = a2.

Proof:

Clearly, the angle between a and itself is zero so that

a • a = a.a cos 0 = a2.

(ii) a • b can be interpreted as the magnitude of one vector times the perpendicular projection
of the other vector onto it.

Proof:

bcos θ is the perpendicular projection of b onto a and acos θ is the perpendicular projection
of a onto b.
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(iii) a • b = b • a.

Proof:

This follows since abcos θ = bacos θ.

(iv) Two non-zero vectors are perpendicular if and only if their Scalar Product is zero.

Proof:

a is perpendicular to b if and only if the angle θ = π
2
; that is, if and only if cos θ = 0 and

hence, abcos θ = 0.

(v) a • (b + c) = a • b + a • c.
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The result follows from (ii) since the projections PR and PQ of b and c respectively onto a
add up to the projection PS of b + c onto a.

Note:
We need to observe that RS is equal in length to PQ.

(vi) The Scalar Product of any two of the standard unit vectors i, j and k is given by the
following multiplication table:

• i j k
i 1 0 0
j 0 1 0
k 0 0 1

That is, i • i = 1, j • j = 1 and k • k = 1;

but,

i • j = 0, i • k = 0 and j • k = 0.
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8.3.3 THE STANDARD FORMULA FOR DOT PRODUCT

If
a = a1i + a2j + a3k and b = b1i + b2j + b3k,

then
a • b = a1b1 + a2b2 + a3b3.

Proof:

This result follows easily from the multiplication table in (vi).

Note: The angle between two vectors

If θ is the angle between the two vectors a and b, then

cos θ =
a • b

ab
.

Proof:

This result is just a restatement of the original definition of a Scalar Product.

EXAMPLE

If
a = 2i + 2j− k and b = 3j− 4k,

then,
a • b = 2× 0 + 2× 3 + (−1)× (−4) = 10.

Hence,

cos θ =
10√

22 + 22 + 12
√

32 + 42
=

10

15
=

2

3
.

Thus,
θ = 48.19◦ or 0.84 radians.
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8.3.4 THE VECTOR PRODUCT (or “Cross” Product)

DEFINITION

If θ is the angle between two vectors a and b, drawn so that they have a common end-point
and are directed away from that point, then the “Vector Product” of a and b is defined
to be a vector of magnitude

ab sin θ,

in a direction which is perpendicular to the plane containing a and b and in a sense which
obeys the “right-hand-thread screw rule” in turning from a to b. The Vector Product
is denoted by

a x b.
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Scientific Application

Consider the following diagram:
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Suppose that the vector OA = a represents a force acting at the point O and that the vector
OB = b is the position vector of the point B. Let the angle between the two vectors be θ.

Then the “moment” of the force OA about the point B is a vector whose magnitude is

ab sin θ

and whose direction is perpendicular to the plane of O, A and B in a sense which obeys the
right-hand-thread screw rule in turning from OA to OB. That is

Moment = a x b.
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Note:
The quantity b sin θ is the perpendicular distance from the point B to the force OA.

8.3.5 DEDUCTIONS FROM THE DEFINITION OF CROSS PRODUCT

(i)
a x b = −(b x a) = (−b) x a = b x (−a).

Proof:
This follows easily by considering the implications of the right-hand-thread screw rule.

(ii) Two vectors are parallel if and only if their Cross Product is a zero vector.

Proof:
Two vectors are parallel if and only if the angle, θ, between them is zero or π. In either case,
sin θ = 0, which means that ab sin θ = 0; that is, |a x b| = 0.

(iii) The Cross Product of a vector with itself is a zero vector.

Proof:
Clearly, the angle between a vector, a, and itself is zero. Hence,

|a x a| = a.a. sin 0 = 0.

(iv)
a x (b + c) = a x b + a x c.

Proof:
This is best proved using the standard formula for a Cross Product in terms of components
(see 8.3.6 below).

(v) The multiplication table for the Cross Products of the standard unit vectors i, j and k
is as follows:

x i j k
i O k −j
j − k O i
k j − i O

That is,
i x i = O, j x j = O, k x k = O, i x j = k, j x k = i, k x i = j, j x i = − k,
k x j = − i and i x k = − j.

8.3.6 THE STANDARD FORMULA FOR CROSS PRODUCT

If
a = a1i + a2j + a3k and b = b1i + b2j + b3k,

then,
a x b = (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.
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This is usually abbreviated to

a x b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ ,

the symbol on the right hand side being called a “determinant” (see Unit 7.2).

EXAMPLES

1. If a = 2i + 2j − k and b = 3j − 4k, determine a x b.

Solution

a x b =

∣∣∣∣∣∣∣
i j k
2 2 −1
0 3 −4

∣∣∣∣∣∣∣ = (−8 + 3)i− (−8− 0)j + (6− 0)k = −5i + 8j + 6k.

2. Show that, for any two vectors a and b,

(a + b) x (a− b) = 2(b x a).

Solution

The left hand side =
a x a− a x b + b x a− b x b.

That is,
O + b x a + b x a = 2(b x a).

3. Determine the area of the triangle defined by the vectors

a = i + j + k and b = 2i− 3j + k.

Solution

If θ is the angle between the two vectors a and b, then the area of the triangle is
1
2
ab sin θ from elementary trigonometry. The area is therefore given by

1

2
|a x b|.

That is,

Area =
1

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
i j k
1 1 1
2 −3 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =

1

2
|4i + j− 5k|.

This gives

Area =
1

2

√
16 + 1 + 25 =

1

2

√
42 ' 3.24
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8.3.7 EXERCISES

1. In the following cases, evaluate the Scalar Product a • b and hence determine the angle,
θ between a and b:

(a) a = 2i + 2j − k and b = 3i − 6j + 2k;

(b) a = i + 2j − k and b = 3j + k;

(c) a = − i − j + 4k and b = 7i − 2k.

2. Find out which of the following pairs of vectors are perpendicular and determine the
cosine of the angle between those which are not:

(a) 3j and 2j − 2k;

(b) i + 3j − 5k and − i + 2j + k;

(c) 2i + 10k and 7j;

(d) 2i + 2j − k and 6i − 3j + 2k.

3. If a = 2i + j + k, b = i − 2j − 2k and c = 3i − 4j + 2k, determine the length of the
projection of a + c onto b.

4. If a = 2i − 3j + 5k and b = 3i + j − 2k, evaluate

(a + b) • (a− b).

5. Determine the components of the vector a x b in the following cases:

(a) a = 2i + 2j − k and b = 3i − 6j + 2k;

(b) a = i + 2j − k and b = 3j + k;

(c) a = − i − j + 4k and b = 7i − 2k.

6. If a = 3i − j + 2k and b = i + 3j − 2k, show that a x b is perpendicular to the vector
c = 9i + 2j + 2k.

7. Given that a x b is perpendicular to each one of the vectors a and b, determine a unit
vector which is perpendicluar to each one of the vectors a = 2i − j + k and b = 3i +
4j − k.
Calculate also the sine of the angle, θ, between a and b.

8. Determine the area of the triangle whose vertices are the points A(3, − 1,2),
B(1, − 1, − 3) and C(4, − 3,1) in space. State your answer correct to two places of
decimals.
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8.3.8 ANSWERS TO EXERCISES

1. (a) Scalar Product = −8, cos θ ' −0.381 and θ ' 112.4◦;

(b) Scalar Product = 5, cos θ ' 0.645 and θ ' 49.80◦;

(c) Scalar Product = −15, cos θ ' −0.485 and θ ' 119.05◦

2. (a) Cosine ' 0.707;

(b) The vectors are perpendicular;

(c) The vectors are perpendicular;

(d) Cosine ' 0.190

3. The length of the projection is 5
3
.

4. The value of the Dot Product is 24.

5. (a) The components are −2,−7,−18;

(b) The components are 5,−1, 3;

(c) The components are 2, 26, 7.

6. Show that (a x b) • c = 0.

7. A unit vector is

±−3i + 5j + 11k√
155

and

sin θ =

√
155√

6.
√

26
' 0.997

8. The area is 6.42

8


