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UNIT 12.9 - INTEGRATION 9

REDUCTION FORMULAE

INTRODUCTION

For certain integrals, both definite and indefinite, the function being integrated (that is, the
“integrand”) consists of a product of two functions, one of which involves an unspecified inte-
ger, say n. Using the method of integration by parts, it is sometimes possible to express such
an integral in terms of a similar integral where n has been replaced by (n− 1), or sometimes
(n− 2). The relationship between the two integrals is called a “reduction formula” and,
by repeated application of this formula, the original integral may be determined in terms of
n.

12.9.1 INDEFINITE INTEGRALS

The method will be illustrated by examples.

EXAMPLES

1. Obtain a reduction formula for the indefinite integral

In =
∫

xnex dx

and, hence, determine I3.

Solution

Using integration by parts with u = xn and dv
dx

= ex, we obtain

In = xnex −
∫

ex.nxn−1 dx.

That is,

In = xnex − nIn−1.

Substituting n = 3,

I3 = x3ex − 3I2,

where

I2 = x2ex − 2I1
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and

I1 = xex − I0.

But

I0 =
∫

ex dx = ex + constant,

which leads us to the conclusion that

I3 = x3ex − 3
[
x2ex − 2 (xex − ex)

]
+ constant.

In other words,

I3 = ex
[
x3 − 3x2 + 6x− 6

]
+ C,

where C is an arbitrary constant.

2. Obtain a reduction formula for the indefinite integral

In =
∫

xn cos x dx

and, hence, determine I2 and I3.

Solution

Using integration by parts with u = xn and dv
dx

= cos x, we obtain

In = xn sin x−
∫

sin x.nxn−1 dx = xn sin x− n
∫

xn−1 sin x dx.

Using integration by parts in this last integral, with u = xn−1 and dv
dx

= sin x, we obtain

In = xn sin x− n
{
−xn−1 cos x +

∫
cos x.(n− 1)xn−2 dx

}
.

That is,

In = xn sin x + nxn−1 cos x− n(n− 1)In−2.

Substituting n = 2,

I2 = x2 sin x + 2x cos x− 2I0,
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where

I0 =
∫

cos x dx = sin x + constant.

Hence,

I2 = x2 sin x + 2x cos x− 2 sin x + C,

where C is an arbitrary constant.

Also, substituting n = 3,

I3 = x3 sin x− 3x2 cos x− 3.2.I1,

where

I1 =
∫

x cos x dx = x sin x + cos x + constant.

Therefore,

I3 = x3 sin x− 3x2 cos x− 6x sin x− 6 cos x + D,

where D is an arbitrary constant.

12.9.2 DEFINITE INTEGRALS

Integrals of the type encountered in the previous section may also include upper and lower
limits of integration. The process of finding a reduction formula is virtually the same, except
that the limits of integration are inserted where appropriate. Again, the method is illustrated
by examples.

EXAMPLES

1. Obtain a reduction formula for the definite integral

In =
∫ 1

0
xnex dx

and, hence, determine I3.
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Solution

From the first example in section 12.9.1,

In = [xnex]10 − nIn−1 = e− nIn−1.

Substituting n = 3,

I3 = e− 3I2,

where

I2 = e− 2I1

and

I1 = e− I0.

But

I0 =
∫ 1

0
ex dx = e− 1,

which leads us to the conclusion that

I3 = e− 3e + 6e− 6e + 6 = 6− 2e.

2. Obtain a reduction formula for the definite integral

In =
∫ π

0
xn cos x dx

and, hence, determine I2 and I3.

Solution

From the second example in section 12.9.1,

In =
[
xn sin x + nxn−1 cos x

]π

0
− n(n− 1)In−2 = −nπn−1 − n(n− 1)In−2.

Substituting n = 2,

I2 = −2π − 2I0,

where

I0 =
∫ π

0
cos x dx = [sin x]π0 = 0.
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Hence,

I2 = −2π.

Also, substituting n = 3,

I3 = −3π2 − 3.2.I1,

where

I1 =
∫ π

0
x cos x dx = [x sin x + cos x]π0 = −2.

Therefore,

I3 = −3π2 + 12.

12.9.3 EXERCISES

1. Obtain a reduction formula for

In =
∫

xne2x dx

when n ≥ 1 and, hence, determine I3.

2. Obtain a reduction formula for

In =
∫ 1

0
xne2xdx

when n ≥ 1 and, hence, evaluate I4.

3. Obtain a reduction formula for

In =
∫

xn sin x dx

when n ≥ 1 and, hence, determine I4.

4. Obtain a reduction formula for

In =
∫ π

0
xn sin x dx

when n ≥ 1 and, hence, evaluate I3.
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5. If

In =
∫

(ln x)n dx,

where n ≥ 1, show that

In = x(ln x)n − nIn−1

and, hence, determine I3.

6. If

In =
∫ (

x2 + a2
)n

dx,

show that

In =
1

2n + 1

[
x

(
x2 + a2

)n
+ 2na2In−1

]
.

Hint: Write (x2 + a2)
n

as 1.(x2 + a2)
n
.

12.9.4 ANSWERS TO EXERCISES

1.

In =
1

2

[
xne2x − nIn−1

]
,

giving

I3 =
e2x

8

[
4x3 − 6x2 + 6x− 3

]
+ C.

2.

In =
1

2

[
e2 − nIn−1

]
,

giving

I4 =
1

4

[
e2 − 3

]
.
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3.

In = −xn cos x + nxn−1 sin x− n(n− 1)In−2,

giving

I4 = −x4 cos x + 4x3 sin x + 12x2 cos x− 24x sin x− 24 cos x + C.

4.

In = πn − n(n− 1)In−2,

giving

I3 = π3 − 6π.

5.

I3 = x
[
ln x)3 − 3(ln x)2 + 6 ln x− 6

]
+ C.
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